C++后端开发知识点汇总

1.进程与线程的本质区别、以及各自的使用场景。

  1. 线程是进程的一部分,进程是程序的一部分。进程是分配资源的基本单位;线程是系统调度和分派的基本单位>
    异同点:
  2. 进程是资源分配的基本单位,而线程是调度的基本单位。
  3. 进程与进程之间是独立的,一个进程的异常终止不会影响其它进程,而线程与线程之间大部分是共享的,一个线程的异常终止会影响其它线程,会使进程终止。
  4. 调度和切换:线程上下文切换比进程上下文切换要快得多。
  5. 线程创建出来的线程是平等的没有上下级,而进程创建出进程就为该进程的子进程。
    多进程的优点:
    ①编程相对容易;通常不需要考虑锁和同步资源的问题。
    ②更强的容错性:比起多线程的一个好处是一个进程崩溃了不会影响其他进程。
    ③有内核保证的隔离:数据和错误隔离。 对于使用如C/C++这些语言编写的本地代码,错误隔离是非常有用的:采用多进程架构的程序一般可以做到一定程度的自恢复;(master守护进程监控所有worker进程,发现进程挂掉后将其重启)。
    多线程的优点:
    ①创建速度快,方便高效的数据共享
    共享数据:多线程间可以共享同一虚拟地址空间;多进程间的数据共享就需要用到共享内存、信号量等IPC技术。
    ②较轻的上下文切换开销 - 不用切换地址空间,不用更改寄存器,不用刷新TLB。
    ③提供非均质的服务。如果全都是计算任务,但每个任务的耗时不都为1s,而是1ms-1s之间波动;这样,多线程相比多进程的优势就体现出来,它能有效降低“简单任务被复杂任务压住”的概率。
    应用场景:
  6. 多进程应用场景
    nginx主流的工作模式是多进程模式(也支持多线程模型)
    几乎所有的web server服务器服务都有多进程的,至少有一个守护进程配合一个worker进程,例如apached,httpd等等以d结尾的进程包括init.d本身就是0级总进程,所有你认知的进程都是它的子进程;
    chrome浏览器也是多进程方式。 (原因:①可能存在一些网页不符合编程规范,容易崩溃,采用多进程一个网页崩溃不会影响其他网页;而采用多线程会。②网页之间互相隔离,保证安全,不必担心某个网页中的恶意代码会取得存放在其他网页中的敏感信息。)
    redis也可以归类到“多进程单线程”模型(平时工作是单个进程,涉及到耗时操作如持久化或aof重写时会用到多个进程)
  7. 多线程应用场景
    线程间有数据共享,并且数据是需要修改的(不同任务间需要大量共享数据或频繁通信时)。
    提供非均质的服务(有优先级任务处
    理)事件响应有优先级。
    单任务并行计算,在非CPU Bound的场景下提高响应速度,降低时延。
    与人有IO交互的应用,良好的用户体验(键盘鼠标的输入,立刻响应)
    案例:
    桌面软件,响应用户输入的是一个线程,后台程序处理是另外的线程;
    memcached
  8. 选什么?
    ①需要频繁创建销毁的优先用线程(进程的创建和销毁开销过大)
    这种原则最常见的应用就是Web服务器了,来一个连接建立一个线程,断了就销毁线程,要是用进程,创建和销毁的代价是很难承受的

②需要进行大量计算的优先使用线程(CPU频繁切换)
所谓大量计算,当然就是要耗费很多CPU,切换频繁了,这种情况下线程是最合适的。
这种原则最常见的是图像处理、算法处理。

③强相关的处理用线程,弱相关的处理用进程
什么叫强相关、弱相关?理论上很难定义,给个简单的例子就明白了。
一般的Server需要完成如下任务:消息收发、消息处理。“消息收发”和“消息处理”就是弱相关的任务,而“消息处理”里面可能又分为“消息解码”、“业务处理”,这两个任务相对来说相关性就要强多了。因此“消息收发”和“消息处理”可以分进程设计,“消息解码”、“业务处理”可以分线程设计。
当然这种划分方式不是一成不变的,也可以根据实际情况进行调整。

④可能要扩展到多机分布的用进程,多核分布的用线程

⑤都满足需求的情况下,用你最熟悉、最拿手的方式
至于“数据共享、同步”、“编程、调试”、“可靠性”这几个维度的所谓的“复杂、简单”应该怎么取舍,我只能说:没有明确的选择方法。但我可以告诉你一个选择原则:如果多进程和多线程都能够满足要求,那么选择你最熟悉、最拿手的那个。

2.进程调度算法的特点以及使用场景

1、时间片轮转调度算法(RR):给每个进程固定的执行时间,根据进程到达的先后顺序让进程在单位时间片内执行,执行完成后便调度下一个进程执行,时间片轮转调度不考虑进程等待时间和执行时间,属于抢占式调度。优点是兼顾长短作业;缺点是平均等待时间较长,上下文切换较费时。适用于分时系统。
2、先来先服务调度算法(FCFS):根据进程到达的先后顺序执行进程,不考虑等待时间和执行时间,会产生饥饿现象。属于非抢占式调度,优点是公平,实现简单;缺点是不利于短作业。
3、优先级调度算法(HPF):在进程等待队列中选择优先级最高的来执行。常被用于批处理系统中,还可用于实时系统中。
4、多级反馈队列调度算法:将时间片轮转与优先级调度相结合,把进程按优先级分成不同的队列,先按优先级调度,优先级相同的,按时间片轮转。优点是兼顾长短作业,有较好的响应时间,可行性强,适用于各种作业环境。
5、高响应比优先调度算法:根据“响应比=(进程执行时间+进程等待时间)/ 进程执行时间”这个公式得到的响应比来进行调度。高响应比优先算法在等待时间相同的情况下,作业执行的时间越短,响应比越高,满足段任务优先,同时响应比会随着等待时间增加而变大,优先级会提高,能够避免饥饿现象。优点是兼顾长短作业,缺点是计算响应比开销大,适用于批处理系统。

3. 进程通信方法的特点以及使用场景

一、共享内存通信
共享内存是指多个进程共享一块内存,是专门用来解决不同进程之间的通信问题的,由于是直接对内存进行数据传输操作,所以是速度最快的IPC(inter-process communication)方式,因为是共享内存,所以需要配合信号量机制实现同步。
二、管道通信
无名管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:
高级管道(popen):将另一个程序当做一个新的进程在当前程序进程中启动,则它算是当前程序的子进程,这种方式我们成为高级管道方式。
有名管道 (named pipe) : 有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
三、消息队列通信
消息队列( message queue ) : 消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
四、套接字通信
套接字( socket ) : 套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同机器间的进程通信。

4.死锁必要条件、解决死锁策略,能写出和分析死锁的代码

**死锁:**指多个进程因竞争共享资源而造成的一种僵局,若无外力作用,这些进程都将永远不能再 向前推进。
安全状态与不安全状态:安全状态指系统能按某种进程顺序来为每个进程分配其所需资源,直至最大需求,使每个进程都可顺利完成。若系统不存在这样一个序列, 则称系统处于不安全状态。

产生死锁的原因:(1)竞争系统资源 (2)进程的推进顺序不当

产生死锁的必要条件:

互斥条件:进程要求对所分配的资源进行排它性控制,即在一段时间内某资源仅为一进程所占用。
请求和保持条件:当进程因请求资源而阻塞时,对已获得的资源保持不放。
不剥夺条件:进程已获得的资源在未使用完之前,不能剥夺,只能在使用完时由自己释放。
环路等待条件:在发生死锁时,必然存在一个进程–资源的环形链。
解决死锁的基本方法:
预防死锁:

资源一次性分配:(破坏请求和保持条件)
可剥夺资源:即当某进程新的资源未满足时,释放已占有的资源(破坏不可剥夺条件)
资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反(破坏环路等待条件)
避免死锁:

预防死锁的几种策略,会严重地损害系统性能。因此在避免死锁时,要施加较弱的限制,从而获得 较满意的系统性能。由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法。
检测死锁

首先为每个进程和每个资源指定一个唯一的号码;然后建立资源分配表和进程等待表
解除死锁:

当发现有进程死锁后,便应立即把它从死锁状态中解脱出来,常采用的方法有:
剥夺资源:从其它进程剥夺足够数量的资源给死锁进程,以解除死锁状态;
撤消进程:可以直接撤消死锁进程或撤消代价最小的进程,直至有足够的资源可用,死锁状态.消除为止;所谓代价是指优先级、运行代价、进程的重要性和价值等。

5.虚拟内存的作用,分页系统实现虚拟内存原理

操作系统有一块物理内存(中间的部分),有两个进程(实际会更多)P1 和 P2,操作系统偷偷地分别告诉 P1 和 P2,我的整个内存都是你的,随便用,管够。可事实上呢,操作系统只是给它们画了个大饼,这些内存说是都给了 P1 和 P2,实际上只给了它们一个序号而已。只有当 P1 和 P2 真正开始使用这些内存时,系统才开始使用辗转挪移,拼凑出各个块给进程用,P2 以为自己在用 A 内存,实际上已经被系统悄悄重定向到真正的 B 去了,甚至,当 P1 和 P2 共用了 C 内存,他们也不知道。

操作系统的这种欺骗进程的手段,就是虚拟内存。对 P1 和 P2 等进程来说,它们都以为自己占用了整个内存,而自己使用的物理内存的哪段地址,它们并不知道也无需关心。

分页和页表虚拟内存是操作系统里的概念,对操作系统来说,虚拟内存就是一张张的对照表,P1 获取 A 内存里的数据时应该去物理内存的 A 地址找,而找 B 内存里的数据应该去物理内存的 C 地址。

我们知道系统里的基本单位都是 Byte 字节,如果将每一个虚拟内存的 Byte 都对应到物理内存的地址,每个条目最少需要 8字节(32位虚拟地址->32位物理地址),在 4G 内存的情况下,就需要 32GB 的空间来存放对照表,那么这张表就大得真正的物理地址也放不下了,于是操作系统引入了 页(Page)的概念。

在系统启动时,操作系统将整个物理内存以 4K 为单位,划分为各个页。之后进行内存分配时,都以页为单位,那么虚拟内存页对应物理内存页的映射表就大大减小了,4G 内存,只需要 8M 的映射表即可,一些进程没有使用到的虚拟内存,也并不需要保存映射关系,而且Linux 还为大内存设计了多级页表,可以进一页减少了内存消耗。4
射表,就被称为页表。

6.页面置换算法的原理,特别是 LRU 的实现原理,最好能手写,再说明它在 Redis 等作为缓存置换算法。

**页面置换算法:**地址映射过程中,若在页面中发现所要访问的页面不在内存中,则产生缺页中断。当发生缺页中断时,如果操作系统内存中没有空闲页面,则操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法。
**最近最久未使用(LRU)算法:**利用局部性原理,根据一个作业在执行过程中过去的页面访问历史来推测未来的行为。它认为过去一段时间里不曾被访问过的页面,在最近的将来可能也不会再被访问。所以,这种算法的实质是:当需要淘汰一个页面时,总是选择在最近一段时间内最久不用的页面予以淘汰。 即淘汰最近最长时间未访问过的页面。(往前看)
1.最佳置换算法(OPT


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部