torch.unsqueeze()函数理解

torch.unsqueeze()函数理解

torch.unsqueeze(input, dim)  使用时等同于  input.unsqueeze(dim)

torch.unsqueeze()函数起到升维的作用,dim等于几表示在第几维度加一,比如原来x的size=([4]),x.unsqueeze(0)之后就变成了size=([1, 4]),而x.unsqueeze(1)之后就变成了size=([4, 1]),注意dim∈[-input.dim() - 1, input.dim() + 1]
例如

  1. 输入一维张量,即input.dim()=1
# 输入:
x = torch.tensor([1, 2, 3, 4])  # x.dim()=1
print(x)
print(x.shape)
y = x.unsqueeze(0)
print(y)
print(y.shape)  # 此时y.dim()=2
z = x.unsqueeze(1)
print(z)
print(z.shape)  # 此时z.dim()=2
# 输出:
tensor([1, 2, 3, 4])
torch.Size([4])
tensor([[1, 2, 3, 4]])
torch.Size([1, 4])
tensor([[1],[2],[3],[4]])
torch.Size([4, 1])
  1. 输入二维张量,即input.dim()=2
# 输入:
x = torch.tensor([[1, 2, 3], [4, 5, 6]])  # x.dim()=2
print(x)
print(x.shape)
y = x.unsqueeze(0)
print(y)
print(y.shape)  # 此时y.dim()=3
z = x.unsqueeze(1)
print(z)
print(z.shape)  # 此时z.dim()=3
# 输出:
tensor([[1, 2, 3],[4, 5, 6]])
torch.Size([2, 3])
tensor([[[1, 2, 3],[4, 5, 6]]])
torch.Size([1, 2, 3])
tensor([[[1, 2, 3]],[[4, 5, 6]]])
torch.Size([2, 1, 3])
  1. 输入四维张量,即input.dim()=4
# 输入:
x = torch.tensor([[[[1, 2, 3], [4, 5, 6]],[[0, 2, 1], [1, 5, 2]]],[[[1, 2, 3], [4, 5, 6]],[[0, 2, 1], [1, 5, 2]]]])
print(x)
print(x.shape)y2 = x.unsqueeze(2)
print(y2)
print(y2.shape)y3 = x.unsqueeze(3)
print(y3)
print(y3.shape)
# 输出:
tensor([[[[1, 2, 3],[4, 5, 6]],[[0, 2, 1],[1, 5, 2]]],[[[1, 2, 3],[4, 5, 6]],[[0, 2, 1],[1, 5, 2]]]])
torch.Size([2, 2, 2, 3])
tensor([[[[[1, 2, 3],[4, 5, 6]]],[[[0, 2, 1],[1, 5, 2]]]],[[[[1, 2, 3],[4, 5, 6]]],[[[0, 2, 1],[1, 5, 2]]]]])
torch.Size([2, 2, 1, 2, 3])
tensor([[[[[1, 2, 3]],[[4, 5, 6]]],[[[0, 2, 1]],[[1, 5, 2]]]],[[[[1, 2, 3]],[[4, 5, 6]]],[[[0, 2, 1]],[[1, 5, 2]]]]])
torch.Size([2, 2, 2, 1, 3])


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部