PHP图像识别技术原理与实现

其实图像识别技术与我们平时做的密码验证之类的没有什么区别,都是事先把要校验的数据入库,然后使用时将录入(识别)的数据与库中的数据做对比,只不过图像识别技术有一部分的容错性,而我们平时的密码验证是要100%匹配。

前几天,有朋友谈到做游戏点击抽奖,识别图片中的文字,当时立马想到的就是js控制或者flash做遮罩层,感觉这种办法是最方便快捷效果好,而且节省服务器资源,但是那边提的要求竟然是通过php识别图像中的文字。

赶巧那两天的新闻有:1、马云人脸识别支付;2、12306使用新的验证码,说什么现在国内的抢票软件都不能用了,发布不到一天就被破解。然后又很凑巧的那天早上看了一篇Java的图像识别技术文章。于是就琢磨着看一下PHP的图像识别技术。

其实所谓的图像识别,已经不是什么新技术了,起码我找到的资料都是很早之前的了。只不过我一直没涉及到这方面的工作,就一直没看过。

先说下这次实验的需求:有一张图片,里面三个位置分别有三个数字,要求取出相应位置的数字的值。(眼尖的同学可能会看出下面的代码是我拿的别人的,没错,的确是我直接copy别人并删减的,毕竟我对这些也是浅尝辄止,最后会贴出原作者的初始代码)


class gjPhone
{protected $imgPath; // 图片路径protected $imgSize; // 图片大小protected $hecData; // 分离后数组protected $horData; // 横向整理的数据protected $verData; // 纵向整理的数据function __construct ($path){$this->imgPath = $path;}public function getHec (){$size = getimagesize($this->imgPath);$res = imagecreatefrompng($this->imgPath);for ($i = 0; $i < $size[1]; ++ $i) {for ($j = 0; $j < $size[0]; ++ $j) {$rgb = imagecolorat($res, $j, $i);$rgbarray = imagecolorsforindex($res, $rgb);if ($rgbarray['red'] < 125 || $rgbarray['green'] < 125 ||$rgbarray['blue'] < 125) {$data[$i][$j] = 1;} else {$data[$i][$j] = 0;}}}$this->imgSize = $size;$this->hecData = $data;}public function magHorData (){$data = $this->hecData;$size = $this->imgSize;$z = 0;for ($i = 0; $i < $size[1]; ++ $i) {if (in_array('1', $data[$i])) {$z ++;for ($j = 0; $j < $size[0]; ++ $j) {if ($data[$i][$j] == '1') {$newdata[$z][$j] = 1;} else {$newdata[$z][$j] = 0;}}}}return $this->horData = $newdata;}public function showPhone ($ndatas){error_reporting(0);$phone = null;$d = 0;foreach ($ndatas as $key => $val) {if (in_array(1, $val)) {foreach ($val as $k => $v) {$ndArr[$d] .= $v;}}if (! in_array(1, $val)) {$d ++;}}foreach ($ndArr as $key01 => $val01) {$phone .= $this->initData($val01);}return $phone;}/*** 初始数据*/public function initData ($numStr){$result = null;$data = array('1' => '00000000111000000000000001110000000001001000100000000010100011000000000011000110000000000110000100000000010110011000000','5' => '00000000001000000000000000010000000000100100100000000000101001110000000000100000110000000011000000100000001101000010000','10' => '00000011100011100000000011001100100100100010010001000110000100100010001100001001000100011000010010001001001001100010100');foreach ($data as $key => $val) {similar_text($numStr, $val, $pre);if ($pre > 95) { // 相似度95%以上$result = $key;break;}}return $result;}
}$imgurl = 'jd.png';
list ($width, $heght, $type, $attr) = getimagesize($imgurl);
$new_w = 17;
$new_h = 11;
$thisimage = imagecreatetruecolor($new_w, $new_h); // $new_w, $new_h 为裁剪后的图片宽高
$background = imagecolorallocate($thisimage, 255, 255, 255);
imagefilledrectangle($thisimage, 0, 0, $new_w, $new_h, $background);
$oldimg = imagecreatefrompng($imgurl); // 载入原始图片// 首先定位要取图的位置(这里可以通过前端js或者其他手段定位,由于我这是测试,所以就ps定位并写死了)
$weizhi = array('1' => 165,'5' => 308,'10' => 456
);foreach ($weizhi as $wwzz) {$src_y = 108;imagecopy($thisimage, $oldimg, 0, 0, $wwzz, $src_y, $new_w, $new_h); // $src_y,$new_w为原图中裁剪区域的左上角坐标拷贝图像的一部分将src_im图像中坐标从src_x,src_y开始,宽度为src_w,高度为src_h的一部分拷贝到dst_im图像中坐标为dst_x和dst_y的位置上。$tem_png = 'tem_1.png';imagepng($thisimage, __DIR__ . '/' . $tem_png); // 通过定位从原图中copy出想要识别的位置并生成新的缓存图,用以后面的图像识别类使用。$gjPhone = new gjPhone($tem_png); // 实例化类$gjPhone->getHec(); // 进行图像像素分离$horData = $gjPhone->magHorData(); // 将分离出是数据转成01表示的图像、这里可以根据自己喜好定$phone = $gjPhone->showPhone($horData); // 将转换好的01表示的数据与库中的数据进行匹配,匹配度95以上就算成功,库这里由于是做测试就直接写了数组echo '| ' . $phone . ' | ';
}

如此看来,其实12306验证码被破解也算是有情可原了,也没必要那么的口诛笔伐了罢。只要不断的抓验证码图片并转成自己程序可读的数据存入库里,然后验证的时候进行匹配就可以了。那么阿里的人脸识别支付原理也算是理解了,只不过他们做的可能会很精细。

前端时间有看到阿里云的一个验证码形式,刚开始感觉可能会好点,现在看来,只要有心,其实也是可以破解的啊

/*** 电话号码识别.* @author by zsc for 2010.03.24*/
class gjPhone
{protected $imgPath; // 图片路径protected $imgSize; // 图片大小protected $hecData; // 分离后数组protected $horData; // 横向整理的数据protected $verData; // 纵向整理的数据function __construct ($path){$this->imgPath = $path;}/*** 颜色分离转换...** @param unknown_type $path      * @return unknown*/public function getHec (){$size = getimagesize($this->imgPath);$res = imagecreatefrompng($this->imgPath);for ($i = 0; $i < $size[1]; ++ $i) {for ($j = 0; $j < $size[0]; ++ $j) {$rgb = imagecolorat($res, $j, $i);$rgbarray = imagecolorsforindex($res, $rgb);if ($rgbarray['red'] < 125 || $rgbarray['green'] < 125 ||$rgbarray['blue'] < 125) {$data[$i][$j] = 1;} else {$data[$i][$j] = 0;}}}$this->imgSize = $size;$this->hecData = $data;}/*** 颜色分离后的数据横向整理...** @return unknown*/public function magHorData (){$data = $this->hecData;$size = $this->imgSize;$z = 0;for ($i = 0; $i < $size[1]; ++ $i) {if (in_array('1', $data[$i])) {$z ++;for ($j = 0; $j < $size[0]; ++ $j) {if ($data[$i][$j] == '1') {$newdata[$z][$j] = 1;} else {$newdata[$z][$j] = 0;}}}}return $this->horData = $newdata;}/*** 整理纵向数据...** @return unknown*/public function magVerData ($newdata){for ($i = 0; $i < 132; ++ $i) {for ($j = 1; $j < 13; ++ $j) {$ndata[$i][$j] = $newdata[$j][$i];}}$sum = count($ndata);$c = 0;for ($a = 0; $a < $sum; $a ++) {$value = $ndata[$a];if (in_array(1, $value)) {$ndatas[$c] = $value;$c ++;} elseif (is_array($ndatas)) {$b = $c - 1;if (in_array(1, $ndatas[$b])) {$ndatas[$c] = $value;$c ++;}}}return $this->verData = $ndatas;}/*** 显示电话号码...** @return unknown*/public function showPhone ($ndatas){$phone = null;$d = 0;foreach ($ndatas as $key => $val) {if (in_array(1, $val)) {foreach ($val as $k => $v) {$ndArr[$d] .= $v;}}if (! in_array(1, $val)) {$d ++;}}foreach ($ndArr as $key01 => $val01) {$phone .= $this->initData($val01);}return $phone;}/*** 分离显示...** @param unknown_type $dataArr      */function drawWH ($dataArr){if (is_array($dataArr)) {foreach ($dataArr as $key => $val) {foreach ($val as $k => $v) {if ($v == 0) {$c .= "" . $v . "";} else {$c .= $v;}}$c .= "
";}}echo $c;}/*** 初始数据...** @param unknown_type $numStr * @return unknown*/public function initData ($numStr){$result = null;$data = array(0 => '000011111000001111111110011000000011110000000001110000000001110000000001110000000001011000000011011100000111000111111100000001110000',1 => '011000000000011000000000111111111111111111111111',2 => '001000000011011000000111110000001101110000011001110000011001110000110001111001100001011111100001000110000001',3 => '001000000010011000000011110000000001110000000001110000110001110000110001011001110011011111011111000110001100',4 => '000000001100000000111100000001111100000011101100000111001100001100001100011000001100111111111111111111111111000000001100000000000100',5 => '111111000001111111000001110001000001110001000001110001100001110001100001110000110011110000111111000000001100',6 => '000011111000001111111110011000110011110001100001110001100001110001100001110001100001010001110011010000111111000000001100',7 => '110000000000110000000111110000111111110001110000110111000000111100000000111000000000111000000000',8 => '000100011110011111111111110011100001110001100001110001100001110001100001110011100001011111111111000100011110',9 => '001111000000011111100001110000110001110000110001110000110001110000110001011000100001011111100111000111111110000001110000');foreach ($data as $key => $val) {similar_text($numStr, $val, $pre);if ($pre > 95) { // 相似度95%以上$result = $key;break;}}return $result;} }$imgPath = "http://bj.ganji.com/tel/5463013757650d6c5e31093e563c51315b6c5c6c5237.png"; $gjPhone = new gjPhone($imgPath); // 进行颜色分离 $gjPhone->getHec(); // 画出横向数据 $horData = $gjPhone->magHorData(); echo "===============横向数据==============


"; $gjPhone->drawWH($horData); // 画出纵向数据 $verData = $gjPhone->magVerData($horData); echo "


===============纵向数据==============< br/>

"; $gjPhone->drawWH($verData);// 输出电话 $phone = $gjPhone->showPhone($verData); echo "


===============电话==============


" . $phone;




本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部