matlab最小二乘 弹性网络,正则化(3):弹性网络回归

c36ae339dfb8120397a6a3ad86246e54.png引言:在前面一小节中我们指出,在含有多个参数的模型中,如何做出对模型的优化。岭回归更好?还是lasso回归更优?参考:正则化(2):与岭回归相似的 Lasso 回归。在这种情况下,还要一种折中的办法,就是选择弹性网络回归(Elastic Net Regression)。

1. lasso回归与岭回归的异同如下,如果已知模型中的很多变量为无关变量,如astrological offset和airspeed scalar等,我们倾向于选择lasso回归,从而使得拟合模型更加简洁和便于解读。

Size = y-intercept + slope x Weight + diet differece x Hight Fat Diet+

+ astrological offset x Sign + airspeed scalar x Airspeed of Swallow如下,如果模型中有非常多的变量,我们无法知道其是否是无关变量,如基于10000个基因的表达预测小鼠体积。在这种情况下,我们应该选择lasso回归,还是岭回归呢?

答案是弹性网络回归(Elastic Net Regression)。听名字非常炫酷,有弹性的回归,意味着它非常灵活能适应多用场景。简单来说,弹性网络回归是lasso回归和岭回归的结合版本。

2. 弹性网络回归是lasso回归和岭回归的结合版

<


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部