Hive:LATERAL VIEW 使用总结

LATERAL VIEW 使用总结

      • 使用案例一(单个LATERAL VIEW):split + explode + LATERAL VIEW
      • 使用案例二(多个LATERAL VIEW):explode + LATERAL VIEW

The LATERAL VIEW clause is used in conjunction with generator functions such as EXPLODE, which will generate a virtual table containing one or more rows. LATERAL VIEW will apply the rows to each original output row.

lateral view用于和split, explode等UDTF一起使用,它能够将一行数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。lateral view首先为原始表的每行调用UDTF,UTDF会把一行拆分成一或者多行,lateral view再把结果组合,产生一个支持别名表的虚拟表。

LATERAL VIEW Clause - Spark 3.2.0 Documentation (apache.org)

使用案例一(单个LATERAL VIEW):split + explode + LATERAL VIEW

求出每个技能对应的最大的用户的年龄

表和数据

user_iduser_nameageskills
1356kyle23Hadoop-Hive-Spark
1357Jack22Hadoop-Hive
1358Sam26Mysql-Oracle
1359Lucy28Redis-Mysql
1360Rose32Hadoop-Hive-Spark-Flink-Hbase
1361Herry25Flink-Hbase-ClickHouse-Kafka
1362Kelly27Spark-Flink-Hbase
cache table user_info
select '1356' user_id, 'kyle' user_name, 23 age, 'Hadoop-Hive-Spark'  skills
union
select '1357' user_id, 'Jack' user_name, 22 age, 'Hadoop-Hive' skills
union
select '1358' user_id, 'Sam' user_name, 26 age, 'Mysql-Oracle'  skills
union
select '1359' user_id, 'Luc' user_name, 28 age, 'Redis-Mysql' skills
union
select '1360' user_id, 'Rose' user_name, 32 age, 'Hadoop-Hive-Spark-Flink-Hbase' skills
union
select '1361' user_id, 'Harry' user_name, 25 age, 'Flink-Hbase-ClickHouse-Kafka'  skills
union
select '1362' user_id, 'Kelly' user_name, 27 age, 'Spark-Flink-Hbase' skills;

需求分析

先从 skills 字段把每个技能分割出来,然后按照 user_idskills 字段分组,求出最大的年龄

with t1 as (-- 对 skills 字段进行切割并实现列转行select user_id,user_name,age,skillfrom user_infolateral view explode(split(skills,'-')) skill_table as skill
),t2 as (-- 按照 skill 分组 age 排序,为了标记每个技能对应的最大的用户信息select *,row_number() over(partition by skill order by age desc) rnfrom t1
)selectuser_id,user_name,age,skill
from t2
where rn = 1;

在这里插入图片描述

使用案例二(多个LATERAL VIEW):explode + LATERAL VIEW

skillsmark 字段全部转为列

表和数据

user_iduser_nameageskillsmark
1356kyle23[“Hadoop”,“Hive”,“Spark”][“A”, “B”, “C”]
1357Jack22[“Hadoop”,“Hive”][“A”, “D”, “E”]
1358Sam26[“Mysql”,“Oracle”][“B”, “C”]
1359Lucy28[“Redis”,“Mysql”][“D”, “E”]

需求分析

由于 skillsmark 字段全部都是 Array 类型,所以可以直接使用 explode 函数处理

select user_id,user_name,age,skill,mark
FROM baseTable
LATERAL VIEW explode(skills) view1 AS skill
LATERAL VIEW explode(mark) view2 AS mark;


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部