牛顿法与拟牛顿法学习笔记(二)拟牛顿条件


       机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。


目录链接


(1) 牛顿法

(2) 拟牛顿条件

(3) DFP 算法

(4) BFGS 算法

(5) L-BFGS 算法




作者: peghoty 

出处: http://blog.csdn.net/itplus/article/details/21896619

欢迎转载/分享, 但请务必声明文章出处.



本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部