如何使用RAPIDS-PIP实现 GPU 加速数据科学

面对大量数据,单个 CPU 难以做到切分它。

一个超过 100GB 的数据集将有许多数据点,数据点的数值在数百万甚至数十亿的范围内。有了这么多的数据点要处理,不管你的 CPU 有多快,它都没有足够的内核来进行有效的并行处理。如果你的 CPU 有 20 个内核(这将是相当昂贵的 CPU),你一次只能处理 20 个数据点!

CPUs 在时钟频率更重要的任务中会更好—或者由于你根本没有 GPU 实现。如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。

RAPIDS 是一个开源软件库套件,使您可以完全在 GPU 上执行端到端的数据科学和分析管道,旨在通过利用 GPU 加速数据科学。它使用底层 CUDA 代码来实现快速的、GPU 优化的算法,同时在顶层还有一个易于使用的 Python 层。Rapids 的美妙之处在于它与数据科学库的整合非常顺畅:像 pandas DataFrames 可以容易地传递到 Rapids,以实现 GPU 加速。下图说明了 Rapids 如何在保持顶层易用性的同时实现低层的优化和加速。

cce6b91807a666f987be7d6f933c8f1b.png

RAPIDS 官方文档

今天我们在这里介绍rapids环境的配置,对于大多数安装,您需要为 RAPIDS 安装 Conda 或 Docker 环境,我们今天在这里介绍如何利用pip配置rapids环境。

首先我们进入RAPIDS-PIP的官方文档:


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部