ES查询索引字段的分词结果
一、_termvectors
1、查看文档中某一个字段的分词结果
GET /{index}/{type}/{_id}/_termvectors?fields=[field]
2、样例:
text的值为:https://www.b4d99.com/html/202204/45672.html
GET http://IP:POST/textcontent_2022/textcontent/20220422191235893045256250/_termvectors?fields=text
得到的结果:
"terms": {"202204": {"term_freq": 1,"tokens": [{"position": 4,"start_offset": 27,"end_offset": 33}]},"45672": {"term_freq": 1,"tokens": [{"position": 5,"start_offset": 34,"end_offset": 39}]},"com": {"term_freq": 1,"tokens": [{"position": 2,"start_offset": 18,"end_offset": 21}]},"html": {"term_freq": 2,"tokens": [{"position": 3,"start_offset": 22,"end_offset": 26},{"position": 6,"start_offset": 40,"end_offset": 44}]},"https": {"term_freq": 1,"tokens": [{"position": 0,"start_offset": 0,"end_offset": 5}]},"www.b4d99": {"term_freq": 1,"tokens": [{"position": 1,"start_offset": 8,"end_offset": 17}]}
}
二、_analyze
1、语法
POST _analyze
{"analyzer": "具体的分词器","text": "待分词的内容"
}
2、样例:
text的值为:https://www.b4d99.com/html/202204/45672.html
POST _analyze
{"analyzer": "standard","text": "https://www.b4d99.com/html/202204/45672.html"
}
得到的结果:
{"tokens": [{"token": "https","start_offset": 0,"end_offset": 5,"type": "","position": 0},{"token": "www.b4d99","start_offset": 8,"end_offset": 17,"type": "","position": 1},{"token": "com","start_offset": 18,"end_offset": 21,"type": "","position": 2},{"token": "html","start_offset": 22,"end_offset": 26,"type": "","position": 3},{"token": "202204","start_offset": 27,"end_offset": 33,"type": "","position": 4},{"token": "45672","start_offset": 34,"end_offset": 39,"type": "","position": 5},{"token": "html","start_offset": 40,"end_offset": 44,"type": "","position": 6}]
}
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
