python数据清洗常用举例
数据展示

练习代码
import pandas as pd
import numpy as np
import os
from datetime import datetime
data=pd.read_excel(r"C:\Users\10746\Desktop\aa\111.xlsx",engine='openpyxl')
pd.set_option('display.max_columns',None)
pd.set_option('display.max_rows',None)
print(data.head())
data.drop_duplicates(['班级','姓名'],inplace=True)
print(data.describe())
data[(data[['语文','数学','英语']]>100) | (data[['语文','数学','英语']]<0)]=np.nan
print(data.isnull().sum())
da=data.groupby(['班级','年级'])['语文','数学','英语'].mean()data.set_index(['班级','年级'],inplace=True,drop=False)data['语文'].fillna(da['语文'],inplace=True)
data['数学'].fillna(da['数学'],inplace=True)
data['英语'].fillna(da['英语'],inplace=True)
data.reset_index(drop=True,inplace=True)
data.sort_values(by=['年级','班级'],inplace=True,ascending=[True,False])
data['rank'] = [i for i in range(data.iloc[:,0].count())]
data['语文']=data['语文'].astype(int)
data['rq'] = data['日期'].apply(lambda x : x.strftime('%Y/%m/%d'))
data['rq']=data['rq'].apply(pd.to_datetime,format='%Y-%m-%d')
data['rq']=data['rq'].apply(lambda x:int(datetime.timestamp(x)))
data['rq']=pd.to_datetime(data['rq'], unit='s')data['rq']=data['rq'] + pd.Timedelta(days=1)data['y'] = data['日期'].dt.year
data['rrq']=f'{data["rq"].dt.year}年{data["rq"].dt.month}月{data["rq"].dt.day}日'
data['rrq']=list(map(lambda x:f'{x:%Y}年',data['rq']))
if os.path.exists(r'C:\Users\10746\Desktop\aa\1.xlsx'):os.remove(r'C:\Users\10746\Desktop\aa\1.xlsx')
data.to_excel(r'C:\Users\10746\Desktop\aa\1.xlsx')
结果展示

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!