OHEM算法及Caffe代码详解

这是CVPR2016的一篇论文,用于目标检测,本篇博文先介绍这个算法,然后介绍其Caffe代码。

论文:Training Region-based Object Detectors with Online Hard Example Mining
论文链接:https://arxiv.org/abs/1604.03540

算法概述:

OHEM(online hard example miniing)算法的核心思想是根据输入样本的损失进行筛选,筛选出hard example,表示对分类和检测影响较大的样本,然后将筛选得到的这些样本应用在随机梯度下降中训练。在实际操作中是将原来的一个ROI Network扩充为两个ROI Network,这两个ROI Network共享参数。其中前面一个ROI Network只有前向操作,主要用于计算损失;后面一个ROI Network包括前向和后向操作,以hard example作为输入,计算损失并回传梯度。作者将该算法应用在Fast RCNN中,网络结构还是采用VGG16和VGG_CNN_M_1024,数据集主要采用VOC2007,VOC2012和COCO数据集。
算法优点:1、对于数据的类别不平衡问题不需要采用设置正负样本比例的方式来解决,这种在线选择方式针对性更强。2、随着数据集的增大,算法的提升更加明显(作者是通过在COCO数据集上做实验和VOC数据集做对比,因为前者的数据集更大,而且提升更明显,所以有这个结论)。

算法的测试结果:在pascal VOC2007上的mAP为78.9%,在pascal VOC2012上的mAP为76.3%。注意,这些结果的得到包含了一些小tricks,比如multi-scale test(测试时候采用多尺度输入),bounding box的不断迭代回归。

代码的github地址:https://github.com/abhi2610/ohem

算法详解:

如前所述,OHEM算法的核心是选择一些hard example作为训练的样本,那么什么样的样本是hard example呢?答案是:有多样性和高损失的样本。

在论文中作者主要是将OHEM算法用在Fast RCNN结构中。因此可以先回顾下Fast RCNN的结构。
Fast RCNN的结构图如下,主要包含两个部分:1、卷积网络。主要由多个卷积层和max pooling层组成;2、ROI pooling网络。主要包括ROI pooling层,一些全连接层和两个损失层。

这里写图片描述

h


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部