南宁周赛13周
第一题

异或操作:
- 相同为0,不同为1
- 用1异或x能够使得x在0和1之间转换
- 偶数个相同的数异或在一起等于0
本题思路:本题是一个计数DP,突破口在于,当新的数加进来时,他的可能的值的数量与前面几个数异或的结果,以及他本身的取值范围有关。
新的数加进来后异或结果为0:前几个数异或结果为0了,由于新的数不为0,因此不可能。
前几个数异或结果不为0了,那么对于每一个结果,在范围内总能找到一个数与之中和得0。
新的数加进来后异或结果不为0:前几个数异或结果为0了,那么就有2m-1种方式使得结果不为0.
前几个数异或结果不为0:那么一定有一种方式是异或结果为0的,其余方式异或结果还是不为0,即2m-2种方式使得结果不为0.
个人见解,本题巧妙之处在于,将结果分成了两类,结果为0和结果不为0,作为一维状态,进行交替转换。
代码如下:
【在代码中,值得注意的是,2m求的时候会太大,因此要一个个%mod慢慢求】
#include
#include using namespace std;
typedef unsigned long long ll;
ll f[100050][2];
ll Mod=1000000007;int main()
{ll n,m;cin>>n>>m;ll t=1;for(ll i=1;i<=m;i++){t=(t+t)%Mod;//这个是可能超过long long范围的,要一边mod一边做。 }f[1][0]=0;f[1][1]=t-1ll;for(ll i=2;i<=n;i++){f[i][0]=f[i-1][1]%Mod;f[i][1]=(((t%Mod-1ll)%Mod*f[i-1][0]%Mod)%Mod+((t%Mod-2ll)%Mod*f[i-1][1])%Mod)%Mod;}ll k=f[n][0]%Mod;cout<<k;return 0;
}
第四题

这道题和上一题类似,改变的是每一个数拥有了自己的数据范围,根据上题的经验,异或运算是方便计数转化的,这题我们不难想到也是用计数DP。由于b的数据范围一直在变化,我们不难想到可能要特意写一个循环给整个异或进行到的位数。
还应该写一个循环给进行到第几个数。
进行到每个数的时候,需要存储当前位的值,以及当前数有没有使得当前位发生变化。
当当前数当前位为0的计数:当前位之后的数的选择乘上上一个数状态同样状态的计数。(因为0异或0,1都是其本身)
当当前数当前位为1的计数:
如果前几个数的当前位异或是1,则当当前值决策不会产生当前位的变化时,当前值异或1,其余和为0的计数一样。
当当前值决策会产生当前值的变化的时候,除了本来就得到答案的计数,还有每一位未改变得到这个答案的计数,和每一位改变了得到这个答案的计数乘以可以改变的数量,也就是后面位数随机组合的数量260-k.
没有变化的时候,所有数异或起来为0,则基础值为1,否则基础值为0.最后统计变化后所有位都为0的情况。
代码如下:
#include
#include
using namespace std;
typedef long long ll;
ll mod=1e9+7;
int N=100000;
ll b[100010],dp[100010][2][2];
ll n;
int main()
{ll t=0,res,z,j;cin>>n;for(ll i=1;i<=n;i++){cin>>b[i];t^=b[i];}//cout<//统计初始值是不是就异或为0了if(t==0)res=1;elseres=0;for(ll d=60;d>=0;d--){memset(dp,0,sizeof dp);dp[0][0][0]=1;t=1ll<<d;//表示在哪一位z=0; //表示有多少个1 for(ll i=1;i<=n;i++)//枚举每个数 {if(!(b[i]&t))//d位置为0{for(ll j=0;j<2;j++)for(ll k=0;k<2;k++){dp[i][j][k]=dp[i-1][j][k]*((b[i]+1)%mod)%mod;//有每种数再加第k位一种数的情况 }} else{z++; for(ll j=0;j<2;j++){dp[i][j][0]=dp[i-1][j^1][0]*(((b[i]^t)+1)%mod)%mod;dp[i][j][1]=((dp[i-1][j^1][1]*(((b[i]^t)+1)%mod)%mod+dp[i-1][j][0]%mod)%mod+dp[i-1][j][1]*t%mod)%mod;//要一个个取模不然会溢出的!!!这就是标程为什么分开来取模!!! }b[i]^=t;//改变该位情况 }}res=(res+dp[n][0][1]%mod)%mod;//cout<if(z&1) break;//奇数的话就不用做了。 }cout<<res;return 0;
}
第二题

这还是一道卡时间的题目。一开始我用线性筛素数加公式法,
即 n ! = ∏ p r i m e s [ i ] n!=\prod_{}primes[i] n!=∏primes[i]n/i
但是最后大数还是过不去不知道哪里出了问题
代码如下:
include<iostream>
#include
using namespace std;
typedef unsigned long long ll;
int primes[10000020],num[10000020];
ll k=0;
ll mod=1e9+7;ll call(ll p,ll n)
{if(n==0)return 0;return call(p,n/p)%mod+n/p%mod;
}
ll quickpow(ll a,ll b)
{ll ans=1;while(b){if(b&1) ans*=a%mod; a*=a%mod;b=b>>1;}return ans%mod;
}
int main()
{memset(num,-1,sizeof num);for(int i=2;i<10000001;i++){if(num[i]) primes[k++]=i;for(int j=0;j<k&&i*primes[j]<10000001;j++){num[i*primes[j]]=0;if(i%primes[j]==0) break;//只有最小素数能访问到 }}/*for(int i=1;i<=k;i++){cout<ll n;while(cin>>n){if(n==0){cout<<"0"<<endl;}else{ll m=0,res=1;while(primes[m]<=n&&primes[m]!=-1){ll power=call(primes[m],n)%mod;res*=quickpow(primes[m],power)%mod;m++;}cout<<res%mod<<endl;}}return 0;
}
后来我发现竟然是个打表题。。。好吧也不是很惊讶,自己当时的思维不是很活跃,早就该想到的。。。
106的倍数都打在表里即可。
下面是打表代码:
#include
using namespace std;
const int mod=1e9+7;
typedef long long ll;
int main()
{ll res=641102369;for(int k=2;k<=1000;k++){for(ll i=(k-1)*1000000+1;i<=k*1000000;i++){res=res*i%mod;}cout<<res<<",";}return 0;
然后下面是题解:
#include
using namespace std;
const int mod=1e9+7;
typedef long long ll;
ll a[1001]={1,641102369,578095319,5832229,259081142,974067448,316220877,690120224,251368199,980250487,682498929,134623568,95936601,933097914,167332441,598816162,336060741,248744620,626497524,288843364,491101308,245341950,565768255,246899319,968999,586350670,638587686,881746146,19426633,850500036,76479948,268124147,842267748,886294336,485348706,463847391,544075857,898187927,798967520,82926604,723816384,156530778,721996174,299085602,323604647,172827403,398699886,530389102,294587621,813805606,67347853,497478507,196447201,722054885,228338256,407719831,762479457,746536789,811667359,778773518,27368307,438371670,59469516,5974669,766196482,606322308,86609485,889750731,340941507,371263376,625544428,788878910,808412394,996952918,585237443,1669644,361786913,480748381,595143852,837229828,199888908,526807168,579691190,145404005,459188207,534491822,439729802,840398449,899297830,235861787,888050723,656116726,736550105,440902696,85990869,884343068,56305184,973478770,168891766,804805577,927880474,876297919,934814019,676405347,567277637,112249297,44930135,39417871,47401357,108819476,281863274,60168088,692636218,432775082,14235602,770511792,400295761,697066277,421835306,220108638,661224977,261799937,168203998,802214249,544064410,935080803,583967898,211768084,751231582,972424306,623534362,335160196,243276029,554749550,60050552,797848181,395891998,172428290,159554990,887420150,970055531,250388809,487998999,856259313,82104855,232253360,513365505,244109365,1559745,695345956,261384175,849009131,323214113,747664143,444090941,659224434,80729842,570033864,664989237,827348878,195888993,576798521,457882808,731551699,212938473,509096183,827544702,678320208,677711203,289752035,66404266,555972231,195290384,97136305,349551356,785113347,83489485,66247239,52167191,307390891,547665832,143066173,350016754,917404120,296269301,996122673,23015220,602139210,748566338,187348575,109838563,574053420,105574531,304173654,542432219,34538816,325636655,437843114,630621321,26853683,933245637,616368450,238971581,511371690,557301633,911398531,848952161,958992544,925152039,914456118,724691727,636817583,238087006,946237212,910291942,114985663,492237273,450387329,834860913,763017204,368925948,475812562,740594930,45060610,806047532,464456846,172115341,75307702,116261993,562519302,268838846,173784895,243624360,61570384,481661251,938269070,95182730,91068149,115435332,495022305,136026497,506496856,710729672,113570024,366384665,564758715,270239666,277118392,79874094,702807165,112390913,730341625,103056890,677948390,339464594,167240465,108312174,839079953,479334442,271788964,135498044,277717575,591048681,811637561,353339603,889410460,839849206,192345193,736265527,316439118,217544623,788132977,618898635,183011467,380858207,996097969,898554793,335353644,54062950,611251733,419363534,965429853,160398980,151319402,990918946,607730875,450718279,173539388,648991369,970937898,500780548,780122909,39052406,276894233,460373282,651081062,461415770,358700839,643638805,560006119,668123525,686692315,673464765,957633609,199866123,563432246,841799766,385330357,504962686,954061253,128487469,685707545,299172297,717975101,577786541,318951960,773206631,306832604,204355779,573592106,30977140,450398100,363172638,258379324,472935553,93940075,587220627,776264326,793270300,291733496,522049725,579995261,335416359,142946099,472012302,559947225,332139472,499377092,464599136,164752359,309058615,86117128,580204973,563781682,954840109,624577416,895609896,888287558,836813268,926036911,386027524,184419613,724205533,403351886,715247054,716986954,830567832,383388563,68409439,6734065,189239124,68322490,943653305,405755338,811056092,179518046,825132993,343807435,985084650,868553027,148528617,160684257,882148737,591915968,701445829,529726489,302177126,974886682,241107368,798830099,940567523,11633075,325334066,346091869,115312728,473718967,218129285,878471898,180002392,699739374,917084264,856859395,435327356,808651347,421623838,105419548,59883031,322487421,79716267,715317963,429277690,398078032,316486674,384843585,940338439,937409008,940524812,947549662,833550543,593524514,996164327,987314628,697611981,636177449,274192146,418537348,925347821,952831975,893732627,1277567,358655417,141866945,581830879,987597705,347046911,775305697,125354499,951540811,247662371,343043237,568392357,997474832,209244402,380480118,149586983,392838702,309134554,990779998,263053337,325362513,780072518,551028176,990826116,989944961,155569943,596737944,711553356,268844715,451373308,379404150,462639908,961812918,654611901,382776490,41815820,843321396,675258797,845583555,934281721,741114145,275105629,666247477,325912072,526131620,252551589,432030917,554917439,818036959,754363835,795190182,909210595,278704903,719566487,628514947,424989675,321685608,50590510,832069712,198768464,702004730,99199382,707469729,747407118,302020341,497196934,5003231,726997875,382617671,296229203,183888367,703397904,552133875,732868367,350095207,26031303,863250534,216665960,561745549,352946234,784139777,733333339,503105966,459878625,803187381,16634739,180898306,68718097,985594252,404206040,749724532,97830135,611751357,31131935,662741752,864326453,864869025,167831173,559214642,718498895,91352335,608823837,473379392,385388084,152267158,681756977,46819124,313132653,56547945,442795120,796616594,256141983,152028387,636578562,385377759,553033642,491415383,919273670,996049638,326686486,160150665,141827977,540818053,693305776,593938674,186576440,688809790,565456578,749296077,519397500,551096742,696628828,775025061,370732451,164246193,915265013,457469634,923043932,912368644,777901604,464118005,637939935,956856710,490676632,453019482,462528877,502297454,798895521,100498586,699767918,849974789,811575797,438952959,606870929,907720182,179111720,48053248,508038818,811944661,752550134,401382061,848924691,764368449,34629406,529840945,435904287,26011548,208184231,446477394,206330671,366033520,131772368,185646898,648711554,472759660,523696723,271198437,25058942,859369491,817928963,330711333,724464507,437605233,701453022,626663115,281230685,510650790,596949867,295726547,303076380,465070856,272814771,538771609,48824684,951279549,939889684,564188856,48527183,201307702,484458461,861754542,326159309,181594759,668422905,286273596,965656187,44135644,359960756,936229527,407934361,267193060,456152084,459116722,124804049,262322489,920251227,816929577,483924582,151834896,167087470,490222511,903466878,361583925,368114731,339383292,388728584,218107212,249153339,909458706,322908524,202649964,92255682,573074791,15570863,94331513,744158074,196345098,334326205,9416035,98349682,882121662,769795511,231988936,888146074,137603545,582627184,407518072,919419361,909433461,986708498,310317874,373745190,263645931,256853930,876379959,702823274,147050765,308186532,175504139,180350107,797736554,606241871,384547635,273712630,586444655,682189174,666493603,946867127,819114541,502371023,261970285,825871994,126925175,701506133,314738056,341779962,561011609,815463367,46765164,49187570,188054995,957939114,64814326,933376898,329837066,338121343,765215899,869630152,978119194,632627667,975266085,435887178,282092463,129621197,758245605,827722926,201339230,918513230,322096036,547838438,985546115,852304035,593090119,689189630,555842733,567033437,469928208,212842957,117842065,404149413,155133422,663307737,208761293,206282795,717946122,488906585,414236650,280700600,962670136,534279149,214569244,375297772,811053196,922377372,289594327,219932130,211487466,701050258,398782410,863002719,27236531,217598709,375472836,810551911,178598958,247844667,676526196,812283640,863066876,857241854,113917835,624148346,726089763,564827277,826300950,478982047,439411911,454039189,633292726,48562889,802100365,671734977,945204804,508831870,398781902,897162044,644050694,892168027,828883117,277714559,713448377,624500515,590098114,808691930,514359662,895205045,715264908,628829100,484492064,919717789,513196123,748510389,403652653,574455974,77123823,172096141,819801784,581418893,15655126,15391652,875641535,203191898,264582598,880691101,907800444,986598821,340030191,264688936,369832433,785804644,842065079,423951674,663560047,696623384,496709826,161960209,331910086,541120825,951524114,841656666,162683802,629786193,190395535,269571439,832671304,76770272,341080135,421943723,494210290,751040886,317076664,672850561,72482816,493689107,135625240,100228913,684748812,639655136,906233141,929893103,277813439,814362881,562608724,406024012,885537778,10065330,60625018,983737173,60517502,551060742,804930491,823845496,727416538,946421040,678171399,842203531,175638827,894247956,538609927,885362182,946464959,116667533,749816133,241427979,871117927,281804989,163928347,563796647,640266394,774625892,59342705,256473217,674115061,918860977,322633051,753513874,393556719,304644842,767372800,161362528,754787150,627655552,677395736,799289297,846650652,816701166,687265514,787113234,358757251,701220427,607715125,245795606,600624983,10475577,728620948,759404319,36292292,491466901,22556579,114495791,647630109,586445753,482254337,718623833,763514207,66547751,953634340,351472920,308474522,494166907,634359666,172114298,865440961,364380585,921648059,965683742,260466949,117483873,962540888,237120480,620531822,193781724,213092254,107141741,602742426,793307102,756154604,236455213,362928234,14162538,753042874,778983779,25977209,49389215,698308420,859637374,49031023,713258160,737331920,923333660,804861409,83868974,682873215,217298111,883278906,176966527,954913,105359006,390019735,10430738,706334445,315103615,567473423,708233401,48160594,946149627,346966053,281329488,462880311,31503476,185438078,965785236,992656683,916291845,881482632,899946391,321900901,512634493,303338827,121000338,967284733,492741665,152233223,165393390,680128316,917041303,532702135,741626808,496442755,536841269,131384366,377329025,301196854,859917803,676511002,373451745,847645126,823495900,576368335,73146164,954958912,847549272,241289571,646654592,216046746,205951465,3258987,780882948,822439091,598245292,869544707,698611116};
int main()
{ll n;while(cin>>n){ll res=a[n/1000000];for(ll i=n/1000000*1000000+1;i<=n;i++){res=res*i%mod;}cout<<res<<endl;}return 0;
}
第三题

这道题曾经有一个106规模的类似的题,我们无论是运用筛约数也好,用约数个数公式也好,都很容易做出来。
约数个数和公式: ∑ k = 1 n n i \sum_{k=1}^{n}\frac{n}{i} k=1∑nin
但是对于109来说这远远不够。
下面我们来看整数分块问题:
这个在数论中运用很普遍,例如莫比乌斯反演。
并且最经典的应用就是在对 n i \frac{n}{i} in求和上。
假设n为10.
n/1=1;
n/2=5;
n/3=3;
n/4=2;
n/5=2;
n/6=1;
n/7=1;
n/8=1;
n/9=1;
n/10=1;
我们可以看到,除4和除5结果相同,除678910结果都相同,我们便不需要一个个把结果相加。我们把除出来结果相同的分为一个块【n/i,n/(n/i)】。
此时,每一个块的结果都是n/i,将n/i乘上n/(n/i)-n/i+1,相当于一次性加起来了,大大降低了复杂度。在这里我们只需O( x 2 \sqrt{x^2} x2)的时间复杂度求出约数个数和。
代码如下:
#include
using namespace std;
typedef long long ll;
int main()
{ll n;while(cin>>n){ll sum=0;ll j=0;for(ll i=1;i<=n;i=j+1)//除法分块算n/i的和,根号n复杂度 //因为比如9/5=1,9/6=1,9/7=1他们可以一起算节省时间 {j=n/(n/i);sum+=(j-i+1ll)*(n/i);}cout<<sum<<endl;}return 0;
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
