大数据几个框架整理
大数据整理:
一、大数据框架:
Impala:hadoop的sql平台、支持hbase/hdfs、支持超大数据、支持多并发、sql支持好、对内存依赖比较严重。需要自己优化,并且有的语句超过内存会报错。
Spark:各种格式、各种计算(机器学习、图形计算)、可sql、可代码处理、支持scala/java/python语言开发。提供scala/python代码命令行运行、超大数据支持差。
Kylin:预计算、好优化、高性能、支持mr、spark、基于时间的增量更新、流式更新、数据源有hive/kafka、提供开发用的管理台是一套开发系统。由于有预计算、所以其他各个模块独立,能支持高并发。可以直接作为软件系统的数据源。
Phoenix:sql on hbase、快
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
