矩阵求导术(上、下)
点击上方“Datawhale”,选择“星标”公众号
第一时间获取价值内容
矩阵求导的技术,在统计学、控制论、机器学习等领域有广泛的应用。鉴于我看过的一些资料或言之不详、或繁乱无绪,本文来做个科普,分作两篇,上篇讲标量对矩阵的求导术,下篇讲矩阵对矩阵的求导术。本文使用小写字母x表示标量,粗体小写字母 表示向量,大写字母X表示矩阵。
首先来琢磨一下定义,标量f对矩阵X的导数,定义为,即f对X逐元素求导排成与X尺寸相同的矩阵。然而,这个定义在计算中并不好用,实用上的原因是在对较复杂的函数难以逐元素求导;哲理上的原因是逐元素求导破坏了整体性。试想,为何要将f看做矩阵X而不是各元素的函数呢?答案是用矩阵运算更整洁。所以在求导时不宜拆开矩阵,而是要找一个从整体出发的算法。
为此,我们来回顾,一元微积分中的导数(标量对标量的导数)与微分有联系:;多元微积分中的梯度(标量对向量的导数)也与微分有联系: ,这里第一个等号是全微分公式,第二个等号表达了梯度与微分的联系;受此启发,我们将矩阵导数与微分建立联系: ,这里tr代表迹(trace)是方阵对角线元素之和,满足性质:对尺寸相同的矩阵A,B,,即是矩阵A,B的内积,因此上式与原定义相容。
然后来建立运算法则。回想遇到较复杂的一元函数如,我们是如何求导的呢?通常不是从定义开始求极限,而是先建立了初等函数求导和四则运算、复合等法则,再来运用这些法则。故而,我们来创立常用的矩阵微分的运算法则:
加减法:;矩阵乘法: ;转置:;迹:。
逆:。此式可在两侧求微分来证明。
行列式: ,其中表示X的伴随矩阵,在X可逆时又可以写作。此式可用Laplace展开来证明,详见张贤达《矩阵分析与应用》第279页。
逐元素乘法:,表示尺寸相同的矩阵X,Y逐元素相乘。
逐元素函数: ,是逐元素运算的标量函数。
我们试图利用矩阵导数与微分的联系 ,在求出左侧的微分df后,该如何写成右侧的形式并得到导数呢?这需要一些迹技巧(trace trick):
标量套上迹:
转置:。
线性:。
矩阵乘法交换:。两侧都等于。
矩阵乘法/逐元素乘法交换:。两侧都等于。
观察一下可以断言,若标量函数f是矩阵X经加减乘法、行列式、逆、逐元素函数等运算构成,则使用相应的运算法则对f求微分,再使用迹技巧给df套上迹并将其它项交换至dX左侧,即能得到导数。
在建立法则的最后,来谈一谈复合:假设已求得,而Y是X的函数,如何求呢?在微积分中有标量求导的链式法则,但这里我们不能随意沿用标量的链式法则,因为矩阵对矩阵的导数截至目前仍是未定义的。于是我们继续追本溯源,链式法则是从何而来?源头仍然是微分。我们直接从微分入手建立复合法则:先写出,再将dY用dX表示出来代入,并使用迹技巧将其他项交换至dX左侧,即可得到。
接下来演示一些算例。特别提醒要依据已经建立的运算法则来计算,不能随意套用微积分中标量导数的结论,比如认为AX对X的导数为A,这是没有根据、意义不明的。
例1:,求。
解:先使用矩阵乘法法则求微分: ,再套上迹并做交换:,对照导数与微分的联系,得到。
注意:这里不能用,导数与乘常数矩阵的交换是不合法则的运算(而微分是合法的)。有些资料在计算矩阵导数时,会略过求微分这一步,这是逻辑上解释不通的。
例2【线性回归】:。
解:严格来说这是标量对向量的导数,不过可以把向量看做矩阵的特例。将向量范数写成,求微分,使用矩阵乘法、转置等法则:。对照导数与微分的联系,得到。
例3【多元logistic回归】:,求。其中是除一个元素为1外其它元素为0的向量;,其中表示逐元素求指数,代表全1向量。
解1:首先将softmax函数代入并写成,这里要注意逐元素log满足等式,以及满足。求微分,使用矩阵乘法、逐元素函数等法则:。再套上迹并做交换,注意可化简,这是根据等式,故。对照导数与微分的联系,得到。
解2:定义,则 ,先如上求出 ,再利用复合法则:,得到。
例4【方差的最大似然估计】:样本,其中是对称正定矩阵,求方差的最大似然估计。写成数学式是:,求的零点。
解:首先求微分,使用矩阵乘法、行列式、逆等运算法则,第一项是,第二项是。再给第二项套上迹做交换:,其中定义为样本方差。对照导数与微分的联系,有,其零点即的最大似然估计为。
最后一例留给经典的神经网络。神经网络的求导术是学术史上的重要成果,还有个专门的名字叫做BP算法,我相信如今很多人在初次推导BP算法时也会颇费一番脑筋,事实上使用矩阵求导术来推导并不复杂。为简化起见,我们推导二层神经网络的BP算法。
例5【二层神经网络】:,求。其中是除一个元素为1外其它元素为0的向量,同例3,是逐元素sigmoid函数。
解:定义,,,则。在例3中已求出 。使用复合法则,注意此处, 都是变量:,使用矩阵乘法交换的迹技巧从第一项得到,从第二项得到。接下来求,继续使用复合法则,并利用矩阵乘法和逐元素乘法交换的迹技巧:,得到。为求,再用一次复合法则:,得到。
使用小写字母x表示标量,粗体小写字母 表示列向量,大写字母X表示矩阵。矩阵对矩阵的求导采用了向量化的思路,常应用于二阶方法求解优化问题。
首先来琢磨一下定义。矩阵对矩阵的导数,需要什么样的定义?第一,矩阵对矩阵的导数应包含所有mnpq个偏导数,从而不损失信息;第二,导数与微分有简明的联系,因为在计算导数和应用中需要这个联系;第三,导数有简明的从整体出发的算法。我们先定义向量对向量的导数 ;再定义矩阵的(按列优先)向量化,并定义矩阵F对矩阵X的导数。导数与微分有联系。几点说明如下:
按此定义,标量对矩阵的导数是向量,与上篇的定义不兼容,不过二者容易相互转换。为避免混淆,用记号表示上篇定义的矩阵,则有。虽然本篇的技术可以用于标量对矩阵求导这种特殊情况,但使用上篇中的技术更方便。读者可以通过上篇中的算例试验两种方法的等价转换。
标量对矩阵的二阶导数,又称Hessian矩阵,定义为,是对称矩阵。对向量或矩阵求导都可以得到Hessian矩阵,但从矩阵 f出发更方便。
,求导时矩阵被向量化,弊端是这在一定程度破坏了矩阵的结构,会导致结果变得形式复杂;好处是多元微积分中关于梯度、Hessian矩阵的结论可以沿用过来,只需将矩阵向量化。例如优化问题中,牛顿法的更新,满足。
在资料中,矩阵对矩阵的导数还有其它定义,比如,它能兼容上篇中的标量对矩阵导数的定义,但微分与导数的联系(dF等于中每个子块分别与dX做内积)不够简明,不便于计算和应用。
然后来建立运算法则。仍然要利用导数与微分的联系,求微分的方法与上篇相同,而从微分得到导数需要一些向量化的技巧:
线性:。
矩阵乘法:,其中表示Kronecker积,与的Kronecker积是。此式证明见张贤达《矩阵分析与应用》第107-108页。
转置:,A是矩阵,其中是交换矩阵(commutation matrix)。
逐元素乘法:,其中是用A的元素(按列优先)排成的对角阵。
观察一下可以断言,若矩阵函数F是矩阵X经加减乘法、行列式、逆、逐元素函数等运算构成,则使用相应的运算法则对F求微分,再做向量化并使用技巧将其它项交换至左侧,即能得到导数。
再谈一谈复合:假设已求得,而Y是X的函数,如何求呢?从导数与微分的联系入手, ,可以推出链式法则。
和标量对矩阵的导数相比,矩阵对矩阵的导数形式更加复杂,从不同角度出发常会得到形式不同的结果。有一些Kronecker积和交换矩阵相关的恒等式,可用来做等价变形:
。
。
。可以对求导来证明,一方面,直接求导得到;另一方面,引入,有, ,用链式法则得到。
。
,A是m×n矩阵,B是p×q矩阵。可以对做向量化来证明,一方面,;另一方面,。
接下来演示一些算例。
例1:,是矩阵,求。
解:先求微分:,再做向量化,使用矩阵乘法的技巧,注意在dX右侧添加单位阵:,对照导数与微分的联系得到。
特例:如果退化为向量, ,则根据向量的导数与微分的关系 ,得到 。
例2: ,是矩阵,求和。
解:使用上篇中的技术可求得 。为求,先求微分:,再做向量化,使用转置和矩阵乘法的技巧,对照导数与微分的联系,得到,注意它是对称矩阵。在X是对称矩阵时,可简化为。
例3:,是,是,是矩阵,为逐元素函数,求。
解:先求微分:,再做向量化,使用矩阵乘法的技巧:,再用逐元素乘法的技巧:,再用矩阵乘法的技巧:,对照导数与微分的联系得到。
例4【一元logistic回归】:
。其中是取值0或1的标量,,是向量。
解:使用上篇中的技术可求得,其中为sigmoid函数。为求,先求微分: ,其中为sigmoid函数的导数,对照导数与微分的联系,得到。
推广:样本, , ,,求和。有两种方法,方法一:先对每个样本求导,然后相加;方法二:定义矩阵,向量
例5【多元logistic回归】:,求
解:上篇例3中已求得。为求
最后做个总结。我们发展了从整体出发的矩阵求导的技术,导数与微分的联系是计算的枢纽,标量对矩阵的导数与微分的联系是
参考资料:
张贤达. 矩阵分析与应用. 清华大学出版社有限公司, 2004.
Fackler, Paul L. "Notes on matrix calculus." North Carolina State University(2005).
Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." Technical University of Denmark 7 (2008): 15.
HU, Pili. "Matrix Calculus: Derivation and Simple Application." (2012).
往期精彩回顾
那些年做的学术公益-你不是一个人在战斗适合初学者入门人工智能的路线及资料下载机器学习在线手册备注:加入本站微信群或者qq群,请回复“加群”加入知识星球(4400+用户,ID:92416895),请回复“知识星球”
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
