【NLP】Kaggle从零到实践:Bert中文文本分类

Bert是非常强化的NLP模型,在文本分类的精度非常高。本文将介绍Bert中文文本分类的基础步骤,文末有代码获取方法。

步骤1:读取数据

本文选取了头条新闻分类数据集来完成分类任务,此数据集是根据头条新闻的标题来完成分类。

101 京城最值得你来场文化之旅的博物馆_!_保利集团,马未都,中国科学技术馆,博物馆,新中国
101 发酵床的垫料种类有哪些?哪种更好?
101 上联:黄山黄河黄皮肤黄土高原。怎么对下联?
101 林徽因什么理由拒绝了徐志摩而选择梁思成为终身伴侣?
101 黄杨木是什么树?

首先需要下载数据,并解压数据:

wget http://github.com/skdjfla/toutiao-text-classfication-dataset/raw/master/toutiao_cat_data.txt.zip
!unzip toutiao_cat_data.txt.zip

按照数据集格式读取新闻标题和新闻标签:

import pandas as pd
import codecs# 标签
news_label = [int(x.split('_!_')[1])-100 for x in codecs.open('toutiao_cat_data.txt')]
# 文本
news_text = [x.strip().split('_!_')[-1] if x.strip()[-3:] != '_!_' else x.strip().split('_!_')[-2]for x in codecs.open('toutiao_cat_data.txt')]

步骤2:划分数据集

借助train_test_split划分20%的数据为验证集,并保证训练集和验证部分类别同分布。

import torch
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader, TensorDataset
import numpy as np
import pandas as pd
import random
import re# 划分为训练集和验证集
# stratify 按照标签进行采样,训练集和验证部分同分布
x_train, x_test, train_label, test_label =  train_test_split(news_text[:], news_label[:], test_size=0.2, stratify=news_label[:])

步骤3:对文本进行编码

使用transformers对文本进行转换,这里使用的是bert-base-chinese模型,所以加载的Tokenizer也要对应。

# transformers bert相关的模型使用和加载
from transformers import BertTokenizer
# 分词器,词典tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
train_encoding = tokenizer(x_train, truncation=True, padding=True, max_length=64)
test_encoding = tokenizer(x_test, truncation=True, padding=True, max_length=64)

使用编码后的数据构建Dataset:

# 数据集读取
class NewsDataset(Dataset):def __init__(self, encodings, labels):self.encodings = encodingsself.labels = labels# 读取单个样本def __getitem__(self, idx):item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}item['labels'] = torch.tensor(int(self.labels[idx]))return itemdef __len__(self):return len(self.labels)train_dataset = NewsDataset(train_encoding, train_label)
test_dataset = NewsDataset(test_encoding, test_label)

这里dataset是直接读取文本在经过所以加载的Tokenizer处理后的数据,主要的含义如下:

  • input_ids:字的编码

  • token_type_ids:标识是第一个句子还是第二个句子

  • attention_mask:标识是不是填充

步骤4:定义Bert模型

由于这里是文本分类任务,所以直接使用BertForSequenceClassification完成加载即可,这里需要制定对应的类别数量。

from transformers import BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=17)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 单个读取到批量读取
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=True)# 优化方法
optim = AdamW(model.parameters(), lr=2e-5)
total_steps = len(train_loader) * 1
scheduler = get_linear_schedule_with_warmup(optim, num_warmup_steps = 0, # Default value in run_glue.pynum_training_steps = total_steps)

步骤5:模型训练与验证

使用常规的正向传播和反向传播即可,在训练过程中计算类别准确率。

# 训练函数
def train():model.train()total_train_loss = 0iter_num = 0total_iter = len(train_loader)for batch in train_loader:# 正向传播optim.zero_grad()input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['labels'].to(device)outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs[0]total_train_loss += loss.item()# 反向梯度信息loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)# 参数更新optim.step()scheduler.step()iter_num += 1if(iter_num % 100==0):print("epoth: %d, iter_num: %d, loss: %.4f, %.2f%%" % (epoch, iter_num, loss.item(), iter_num/total_iter*100))print("Epoch: %d, Average training loss: %.4f"%(epoch, total_train_loss/len(train_loader)))def validation():model.eval()total_eval_accuracy = 0total_eval_loss = 0for batch in test_dataloader:with torch.no_grad():# 正常传播input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['labels'].to(device)outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs[0]logits = outputs[1]total_eval_loss += loss.item()logits = logits.detach().cpu().numpy()label_ids = labels.to('cpu').numpy()total_eval_accuracy += flat_accuracy(logits, label_ids)avg_val_accuracy = total_eval_accuracy / len(test_dataloader)print("Accuracy: %.4f" % (avg_val_accuracy))print("Average testing loss: %.4f"%(total_eval_loss/len(test_dataloader)))print("-------------------------------")for epoch in range(4):print("------------Epoch: %d ----------------" % epoch)train()validation()

训练一个Epoch的输出精度已经达到87%,Bert模型非常有效。

------------Epoch: 0 ----------------
epoth: 0, iter_num: 2500, loss: 0.7519, 100.00%
Epoch: 0, Average training loss: 0.6181
Accuracy: 0.8747
Average testing loss: 0.4602
-------------------------------

往期精彩回顾适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑温州大学《机器学习课程》视频
本站qq群851320808,加入微信群请扫码:


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部