【深度学习】60题PyTorch简易入门指南,做技术的弄潮儿
1 初识PyTorch
1.1 张量
1.导入pytorch包
import torch2.创建一个空的5x3张量
x = torch.empty(5, 3)
print(x)3.创建一个随机初始化的5x3张量
x = torch.rand(5, 3)
print(x)4.创建一个5x3的0张量,类型为long
x = torch.zeros(5, 3, dtype=torch.long)
print(x)5.直接从数组创建张量
x = torch.tensor([5.5, 3])
print(x)6.创建一个5x3的单位张量,类型为double
x = torch.ones(5, 3, dtype=torch.double)
print(x)7.从已有的张量创建相同维度的新张量,并且重新定义类型为float
x = torch.randn_like(x, dtype=torch.float)
print(x)8.打印一个张量的维度
print(x.size())9.将两个张量相加
y = torch.rand(5, 3)
print(x + y)# 方法二
# print(torch.add(x, y))# 方法三
# result = torch.empty(5, 3)
# torch.add(x, y, out=result)
# print(result)# 方法四
# y.add_(x)
# print(y)10.取张量的第一列
print(x[:, 1])11.将一个4x4的张量resize成一个一维张量
x = torch.randn(4, 4)
y = x.view(16)
print(x.size(),y.size())12.将一个4x4的张量,resize成一个2x8的张量
y = x.view(2, 8)
print(x.size(),y.size())# 方法二
z = x.view(-1, 8) # 确定一个维度,-1的维度会被自动计算
print(x.size(),z.size())13.从张量中取出数字
x = torch.randn(1)
print(x)
print(x.item())1.2 Numpy的操作
14.将张量转换成numpy数组
a = torch.ones(5)
print(a)b = a.numpy()
print(b)15.将张量+1,并观察上题中numpy数组的变化
a.add_(1)
print(a)
print(b)16.从numpy数组创建张量
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(a)
print(b)17.将numpy数组+1并观察上题中张量的变化
np.add(a, 1, out=a)
print(a)
print(b)2 自动微分
2.1 张量的自动微分
18.新建一个张量,并设置requires_grad=True
x = torch.ones(2, 2, requires_grad=True)
print(x)19.对张量进行任意操作(y = x + 2)
y = x + 2
print(y)
print(y.grad_fn) # y就多了一个AddBackward20.再对y进行任意操作
z = y * y * 3
out = z.mean()print(z) # z多了MulBackward
print(out) # out多了MeanBackward2.2 梯度
21.对out进行反向传播
out.backward()22.打印梯度d(out)/dx
print(x.grad) #out=0.25*Σ3(x+2)^223.创建一个结果为矢量的计算过程(y=x*2^n)
x = torch.randn(3, requires_grad=True)y = x * 2
while y.data.norm() < 1000:y = y * 2print(y)24.计算v = [0.1, 1.0, 0.0001]处的梯度
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)print(x.grad)25.关闭梯度的功能
print(x.requires_grad)
print((x ** 2).requires_grad)with torch.no_grad():print((x ** 2).requires_grad)# 方法二
# print(x.requires_grad)
# y = x.detach()
# print(y.requires_grad)
# print(x.eq(y).all())3 神经网络
这部分会实现LeNet5,结构如下所示
3.1 定义网络
import torch
import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()# 26.定义①的卷积层,输入为32x32的图像,卷积核大小5x5卷积核种类6self.conv1 = nn.Conv2d(3, 6, 5)# 27.定义③的卷积层,输入为前一层6个特征,卷积核大小5x5,卷积核种类16self.conv2 = nn.Conv2d(6, 16, 5)# 28.定义⑤的全链接层,输入为16*5*5,输出为120self.fc1 = nn.Linear(16 * 5 * 5, 120) # 6*6 from image dimension# 29.定义⑥的全连接层,输入为120,输出为84self.fc2 = nn.Linear(120, 84)# 30.定义⑥的全连接层,输入为84,输出为10self.fc3 = nn.Linear(84, 10)def forward(self, x):# 31.完成input-S2,先卷积+relu,再2x2下采样x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))# 32.完成S2-S4,先卷积+relu,再2x2下采样x = F.max_pool2d(F.relu(self.conv2(x)), 2) #卷积核方形时,可以只写一个维度# 33.将特征向量扁平成行向量x = x.view(-1, 16 * 5 * 5)# 34.使用fc1+relux = F.relu(self.fc1(x))# 35.使用fc2+relux = F.relu(self.fc2(x))# 36.使用fc3x = self.fc3(x)return xnet = Net()
print(net)37.打印网络的参数
params = list(net.parameters())
# print(params)
print(len(params))38.打印某一层参数的形状
print(params[0].size())39.随机输入一个向量,查看前向传播输出
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)40.将梯度初始化
net.zero_grad()41.随机一个梯度进行反向传播
out.backward(torch.randn(1, 10))3.2 损失函数
42.用自带的MSELoss()定义损失函数
criterion = nn.MSELoss()43.随机一个真值,并用随机的输入计算损失
target = torch.randn(10) # 随机真值
target = target.view(1, -1) # 变成行向量output = net(input) # 用随机输入计算输出loss = criterion(output, target) # 计算损失
print(loss)44.将梯度初始化,计算上一步中loss的反向传播
net.zero_grad()print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)45.计算43中loss的反向传播
loss.backward()print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)3.3 更新权重
46.定义SGD优化器算法,学习率设置为0.01
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.01)47.使用优化器更新权重
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
loss.backward()# 更新权重
optimizer.step()4 训练一个分类器
4.1 读取CIFAR10数据,做标准化
48.构造一个transform,将三通道(0,1)区间的数据转换成(-1,1)的数据
import torchvision
import torchvision.transforms as transformstransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])读取数据集
trainset = cifar(root = './input/cifar10', segmentation='train', transforms=transform)
testset = cifar(root = './input/cifar10', segmentation='test', transforms=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,shuffle=False, num_workers=2)classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')4.2 建立网络
这部分沿用前面的网络
net2 = Net()4.3 定义损失函数和优化器
49.定义交叉熵损失函数
criterion2 = nn.CrossEntropyLoss()50.定义SGD优化器算法,学习率设置为0.001,momentum=0.9
optimizer2 = optim.SGD(net2.parameters(), lr=0.001, momentum=0.9)4.4训练网络
for epoch in range(2):running_loss = 0.0for i, data in enumerate(trainloader, 0):# 获取X,y对inputs, labels = data# 51.初始化梯度optimizer2.zero_grad()# 52.前馈outputs = net2(inputs)# 53.计算损失loss = criterion2(outputs, labels)# 54.计算梯度loss.backward()# 55.更新权值optimizer2.step()# 每2000个数据打印平均代价函数值running_loss += loss.item()if i % 2000 == 1999: # print every 2000 mini-batchesprint('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 2000))running_loss = 0.0print('Finished Training')4.5 使用模型预测
取一些数据
dataiter = iter(testloader)
images, labels = dataiter.next()# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))56.使用模型预测
outputs = net2(images)_, predicted = torch.max(outputs, 1)print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]for j in range(4)))57.在测试集上进行打分
correct = 0
total = 0
with torch.no_grad():for data in testloader:images, labels = dataoutputs = net2(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))4.6 存取模型
58.保存训练好的模型
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)59.读取保存的模型
pretrained_net = torch.load(PATH)60.加载模型
net3 = Net()net3.load_state_dict(pretrained_net)
往期精彩回顾适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑黄海广老师《机器学习课程》视频课本站qq群851320808,加入微信群请扫码:

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
