Spark的SQL操作详解

DataFrame操作(untyped)

printSchema()

object DataframeOperationTest {def main(args: Array[String]): Unit = {val sparkSql = SparkSession.builder().appName("df operation").master("local[*]").getOrCreate()import sparkSql.implicits._val rdd = sparkSql.sparkContext.makeRDD(List((1,"zs",1000.0,true),(2,"ls",2000.0,false),(3,"ww",3000.0,false)))val df = rdd.toDF("id","name","salary","sex")// 打印df的结构df.printSchema()sparkSql.stop()}
}//-----------------------------------------------------------------------------
root|-- id: integer (nullable = false)|-- name: string (nullable = true)|-- salary: double (nullable = false)|-- sex: boolean (nullable = false)

show()

// 默认输出df中前20行数据
df.show()
//-----------------------------------------------------------------------------
+---+----+------+-----+
| id|name|salary|  sex|
+---+----+------+-----+
|  1|  zs|1000.0| true|
|  2|  ls|2000.0|false|
|  3|  ww|3000.0|false|
+---+----+------+-----+

Select()

// 查询指定的字段
// df.select("id","name","sex").show()
// $是另外一种写法[隐式转换] 字符串列名==>Column对象
df.select($"id",$"name",$"sex").show()
//-----------------------------------------------------------------------------
+---+----+-----+
| id|name|  sex|
+---+----+-----+
|  1|  zs| true|
|  2|  ls|false|
|  3|  ww|false|
+---+----+-----+

SelectExpr()

// 查询指定字段【表达式】
// df.selectExpr("name as username").show()
// df.selectExpr("sum(salary)").show()
df.selectExpr("id","name as username","salary","salary*12").show()//-----------------------------------------------------------------------------
+---+--------+------+-------------+
| id|username|salary|(salary * 12)|
+---+--------+------+-------------+
|  1|      zs|1000.0|      12000.0|
|  2|      ls|2000.0|      24000.0|
|  3|      ww|3000.0|      36000.0|
+---+--------+------+-------------+

withColumn()

// 添加或者替换【列名相同】字段
df.select($"id",$"name",$"salary")// .withColumn("year_salary",$"salary"*12) // 添加列.withColumn("salary",$"salary"*12) // 替换已存在的列.show()//-----------------------------------------------------------------------------
+---+----+-------+
| id|name| salary|
+---+----+-------+
|  1|  zs|12000.0|
|  2|  ls|24000.0|
|  3|  ww|36000.0|
+---+----+-------+

withColumnRenamed()

df.select($"id", $"name", $"salary")// .withColumn("year_salary",$"salary"*12) // 添加列.withColumn("salary", $"salary" * 12) // 替换已存在的列.withColumnRenamed("name","username").withColumnRenamed("id","user_id").show()//-----------------------------------------------------------------------------
+-------+--------+-------+
|user_id|username| salary|
+-------+--------+-------+
|      1|      zs|12000.0|
|      2|      ls|24000.0|
|      3|      ww|36000.0|
+-------+--------+-------+

Drop()

df.select($"id", $"name", $"salary")// .withColumn("year_salary",$"salary"*12) // 添加列.withColumn("salary", $"salary" * 12) // 替换已存在的列.withColumnRenamed("name", "username").withColumnRenamed("id", "user_id").drop($"username").show()
//-----------------------------------------------------------------------------+-------+-------+
|user_id| salary|
+-------+-------+
|      1|12000.0|
|      2|24000.0|
|      3|36000.0|
+-------+-------+

DropDuplicates()

// 删除重复数据 DropDuplicates  类似于数据库中distinct【重复数据只保留一个】
val df2 = sparkSql.sparkContext.makeRDD(List((1, "zs", 1000.0, true), (2, "ls", 2000.0, false), (3, "ww", 2000.0, false),(4, "zl", 2000.0, false))).toDF("id","name","salary","sex")
df2.select($"id", $"name", $"salary",$"sex")
// .withColumn("year_salary",$"salary"*12) // 添加列.withColumn("salary", $"salary" * 12) // 替换已存在的列.withColumnRenamed("name", "username").withColumnRenamed("id", "user_id").dropDuplicates("salary","sex").show()//-----------------------------------------------------------------------------
+-------+--------+-------+-----+
|user_id|username| salary|  sex|
+-------+--------+-------+-----+
|      2|      ls|24000.0|false|
|      1|      zs|12000.0| true|
+-------+--------+-------+-----+

OrderBy()| Sort()

// 排序OrderBy()| Sort()
df.select($"id", $"name", $"salary", $"sex")//.orderBy($"salary" desc)//.orderBy($"salary" asc)//.orderBy($"salary" asc,$"id" asc).sort($"salary" desc)  // 等价于OrderBy.show()//-----------------------------------------------------------------------------
+---+----+------+-----+
| id|name|salary|  sex|
+---+----+------+-----+
|  3|  ww|3000.0|false|
|  2|  ls|2000.0|false|
|  1|  zs|1000.0| true|
+---+----+------+-----+

GroupBy ()

// 分组groupBy()
df.groupBy($"sex").sum("salary").show()
//-----------------------------------------------------------------------------
+-----+-----------+
|  sex|sum(salary)|
+-----+-----------+
| true|     1000.0|
|false|     5000.0|
+-----+-----------+

Agg()

// agg 聚合操作
var df3 = List((1, "zs", true, 1, 15000),(2, "ls", false, 2, 18000),(3, "ww", false, 2, 14000),(4, "zl", false, 1, 18000),(4, "zl", false, 1, 16000))
.toDF("id", "name", "sex", "dept", "salary")
import org.apache.spark.sql.functions._
df3.groupBy("sex")// .agg(max("salary"), min("salary"), avg("salary"), sum("salary"), count("salary")).agg(Map(("salary", "max"))) // 另外的一种写法【局限性 只支持单个字段的聚合查询】.show()
//-----------------------------------------------------------------------------
+-----+-------------+
|  sex|count(salary)|
+-----+-------------+
| true|            1|
|false|            4|
+-----+-------------+

Limit()

// limit 限制返回的结果条数
df.limit(2).show()
//-----------------------------------------------------------------------------
+---+----+------+-----+
| id|name|salary|  sex|
+---+----+------+-----+
|  1|  zs|1000.0| true|
|  2|  ls|2000.0|false|
+---+----+------+-----+

Where()

val df4=List((1,"zs",true,1,15000),(2,"ls",false,2,18000),(3,"ww",false,2,14000),(4,"zl",false,1,18000),(5,"win7",false,1,16000)).toDF("id","name","sex","dept","salary")df4.select($"id",$"name",$"sex",$"dept",$"salary")//where("(name like '%s%' and salary > 15000) or name = 'win7'").where(($"name" like "%s%" and $"salary" > 15000) or $"name" ==="win7" ).show()
//--------------------------------------------------------------------------------------
+---+----+-----+----+------+
| id|name|  sex|dept|salary|
+---+----+-----+----+------+
|  2|  ls|false|   2| 18000|
|  5|win7|false|   1| 16000|
+---+----+-----+----+------+

Pivot() 【透视】

var scoreDF=List((1,"math",85),(1,"chinese",80),(1,"english",90), (2,"math",90), (2,"chinese",80)).toDF("id","course","score")scoreDF.groupBy($"id").pivot($"course")  // 行转列【重点】.max("score").show()//--------------------------------------------------------------------------------------
+---+-------+-------+----+
| id|chinese|english|math|
+---+-------+-------+----+
|  1|     80|     90|  85|
|  2|     80|   null|  90|
+---+-------+-------+----+

na()

对空值的一种处理方式

na().fill 填充 null赋予默认值

na().drop 删除为null的一行内容

scoreDF.groupBy($"id").pivot($"course") // 行转列【重点】.max("score")//.na.fill(Map("english" -> 59))  // 为空值赋予一个默认值.na.drop()  // 删除包含空值的一行记录.show()
//--------------------------------------------------------------------------------------
+---+-------+-------+----+
| id|chinese|english|math|
+---+-------+-------+----+
|  1|     80|     90|  85|
+---+-------+-------+----+

over()

窗口函数:

  • 聚合函数
  • 排名函数
  • 分析函数

作用: 窗口函数使用over,对一组数据进行操作,返回普通列和聚合列

val w1 = Window

​ .partitionBy(“分区规则”)

​ .orderBy($“列” asc| desc)

​ .rangeBetween | rowsBetween

窗口函数名 over(w1)

t_userid    name   salary   sex   dept1     zs     1000     true   12     ls	 2000	  false  23     ww	 2000	  false  1// 查询用户信息(id,name,salary,用户所在部门的平均工资)SQL: select id,name,salary,(select avg(salary) from t_user group by dept) as avg_salary from t_userid   name salaray  avg_salary1    zs   1000     15002	 ls   2000     20003    ww   2000     1500spark sql 窗口函数 简化如上查询语义: select id,name,salary,avg(salary) over(partition by dept order by ...) from t_user具体使用方法:
count(...) over(partition by ... order by ...) --求分组后的总数。
sum(...) over(partition by ... order by ...)   --求分组后的和。
max(...) over(partition by ... order by ...)--求分组后的最大值。
min(...) over(partition by ... order by ...)--求分组后的最小值。
avg(...) over(partition by ... order by ...)--求分组后的平均值。
rank() over(partition by ... order by ...)--rank值可能是不连续的。
dense_rank() over(partition by ... order by ...)--rank值是连续的。
first_value(...) over(partition by ... order by ...)--求分组内的第一个值。
last_value(...) over(partition by ... order by ...)--求分组内的最后一个值。
lag() over(partition by ... order by ...)--取出前n行数据。  
lead() over(partition by ... order by ...)--取出后n行数据。
ratio_to_report() over(partition by ... order by ...)--Ratio_to_report() 括号中就是分子,over() 括号中就是分母。
percent_rank() over(partition by ... order by ...)

在这里插入图片描述

//------------------------------------------------------------
val df2 = List((1, "zs", true, 1, 15000),(2, "ls", false, 2, 18000),(3, "ww", false, 2, 14000),(4, "zl", false, 1, 18000),(5, "win7", false, 1, 16000))
.toDF("id", "name", "sex", "dept", "salary")// 定义窗口函数
val w1 = Window
.partitionBy($"dept") // 根据部门dept进行分区: 部门相同的数据划分到同一个分区.orderBy($"salary" asc) // 对分区内的数据 按照工资salary进行降序排列// .rangeBetween(0, 2000) // 窗口数据可视范围  【基于数据范围】// .rowsBetween(0, 1) // 窗口数据可视范围.rowsBetween(Window.unboundedPreceding,Window.unboundedFollowing) // 窗口数据可视范围【基于行 使用行的偏移量】import org.apache.spark.sql.functions._ // 导入隐式转换函数df2.select($"id", $"name", $"sex", $"dept", $"salary")
.withColumn("sum_id", sum("id") over (w1))
.show()

Join()

val userInfoDF= sparkSql.sparkContext.makeRDD(List((1,"zs"),(2,"ls"),(3,"ww"))).toDF("id","name")
val orderInfoDF= sparkSql.sparkContext.makeRDD(List((1,"iphone",1000,1),(2,"mi9",999,1),(3,"连衣裙",99,2))).toDF("oid","product","price","uid")// join DF连接操作
userInfoDF.join(orderInfoDF,$"id"===$"uid","inner").show()
//-----------------------------------------------------------------
+---+----+---+-------+-----+---+
| id|name|oid|product|price|uid|
+---+----+---+-------+-----+---+
|  1|  zs|  1| iphone| 1000|  1|
|  1|  zs|  2|    mi9|  999|  1|
|  2|  ls|  3| 连衣裙|   99|  2|
+---+----+---+-------+-----+---+

cube(多维度)

cube多维度查询 尝试根据多个分组可能继续数据查询

cube(A,B)

​ group by A null

​ group by null B

​ group by null null

​ group by AB

import org.apache.spark.sql.functions._
List((110,50,80,80),(120,60,95,75),(120,50,96,70))
.toDF("height","weight","IQ","EQ")
.cube($"height",$"weight")  // spark sql尝试根据元组第一个和第二个值 进行各种可能分组操作,这种操作的好处,如果以后有任何第一个和第二个值的分区操作,都将出现在cube的结果表中
.agg(avg("IQ"),avg("EQ")) .show()

DataSet操作(typed)

在实际开发中,我们通常使用的是DataFrame API,这种Dataset强类型的操作几乎不使用

package com.baizhi.sql.operation.typedimport org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.scalalang.typed/*** ds 强类型操作** spark context :rdd* spark streaming context : streaming* spark session : sql*/
object DatasetWithTypedOpt {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local[*]").appName("typed opt").getOrCreate()spark.sparkContext.setLogLevel("ERROR")import spark.implicits._val ds = spark.sparkContext.makeRDD(List("Hello Hadoop", "Hello Scala")).flatMap(_.split(" ")).map((_, 1)).toDSds.groupByKey(t => t._1) // 根据单词进行分组操作.agg(typed.sum[(String, Int)](t => t._2)) // 对单词初始值进行聚合.withColumnRenamed("TypedSumDouble(scala.Tuple2)", "num").show()spark.stop()}
}


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部