FusionInsight MRS Flink DataStream API读写Hudi实践

摘要:目前Hudi只支持FlinkSQL进行数据读写,但是在实际项目开发中一些客户存在使用Flink DataStream API读写Hudi的诉求。

本文分享自华为云社区《FusionInsight MRS Flink DataStream API读写Hudi实践》,作者: yangxiao_mrs 。

目前Hudi只支持FlinkSQL进行数据读写,但是在实际项目开发中一些客户存在使用Flink DataStream API读写Hudi的诉求。

该实践包含三部分内容:

1)HoodiePipeline.java ,该类将Hudi内核读写接口进行封装,提供Hudi DataStream API。

2)WriteIntoHudi.java ,该类使用 DataStream API将数据写入Hudi。

3)ReadFromHudi.java ,该类使用 DataStream API读取Hudi数据。

1.HoodiePipeline.java 将Hudi内核读写接口进行封装,提供Hudi DataStream API。关键实现逻辑:

第一步:将原来Hudi流表的列名、主键、分区键set后,通过StringBuilder拼接成create table SQL。

第二步:将该hudi流表注册到catalog中。

第三步:将DynamicTable转换为DataStreamProvider后,进行数据produce或者consume。

import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSink;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.internal.TableEnvironmentImpl;
import org.apache.flink.table.catalog.Catalog;
import org.apache.flink.table.catalog.CatalogTable;
import org.apache.flink.table.catalog.ObjectIdentifier;
import org.apache.flink.table.catalog.ObjectPath;
import org.apache.flink.table.catalog.exceptions.TableNotExistException;
import org.apache.flink.table.connector.sink.DataStreamSinkProvider;
import org.apache.flink.table.connector.source.DataStreamScanProvider;
import org.apache.flink.table.connector.source.ScanTableSource;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.factories.DynamicTableFactory;
import org.apache.flink.table.runtime.connector.sink.SinkRuntimeProviderContext;
import org.apache.flink.table.runtime.connector.source.ScanRuntimeProviderContext;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.table.HoodieTableFactory;import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;/***  A tool class to construct hoodie flink pipeline.**  

How to use ?

* Method {@link #builder(String)} returns a pipeline builder. The builder* can then define the hudi table columns, primary keys and partitions.**

An example:

*
*    HoodiePipeline.Builder builder = HoodiePipeline.builder("myTable");*    DataStreamSink sinkStream = builder*        .column("f0 int")*        .column("f1 varchar(10)")*        .column("f2 varchar(20)")*        .pk("f0,f1")*        .partition("f2")*        .sink(input, false);*  
*/ public class HoodiePipeline {/*** Returns the builder for hoodie pipeline construction.*/public static Builder builder(String tableName) {return new Builder(tableName);}/*** Builder for hudi source/sink pipeline construction.*/public static class Builder {private final String tableName;private final List columns;private final Map options;private String pk;private List partitions;private Builder(String tableName) {this.tableName = tableName;this.columns = new ArrayList<>();this.options = new HashMap<>();this.partitions = new ArrayList<>();}/*** Add a table column definition.** @param column the column format should be in the form like 'f0 int'*/public Builder column(String column) {this.columns.add(column);return this;}/*** Add primary keys.*/public Builder pk(String... pks) {this.pk = String.join(",", pks);return this;}/*** Add partition fields.*/public Builder partition(String... partitions) {this.partitions = new ArrayList<>(Arrays.asList(partitions));return this;}/*** Add a config option.*/public Builder option(ConfigOption option, Object val) {this.options.put(option.key(), val.toString());return this;}public Builder option(String key, Object val) {this.options.put(key, val.toString());return this;}public Builder options(Map options) {this.options.putAll(options);return this;}public DataStreamSink sink(DataStream input, boolean bounded) {TableDescriptor tableDescriptor = getTableDescriptor();return HoodiePipeline.sink(input, tableDescriptor.getTableId(), tableDescriptor.getCatalogTable(), bounded);}public TableDescriptor getTableDescriptor() {EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().build();TableEnvironmentImpl tableEnv = TableEnvironmentImpl.create(environmentSettings);String sql = getCreateHoodieTableDDL(this.tableName, this.columns, this.options, this.pk, this.partitions);tableEnv.executeSql(sql);String currentCatalog = tableEnv.getCurrentCatalog();CatalogTable catalogTable = null;String defaultDatabase = null;try {Catalog catalog = tableEnv.getCatalog(currentCatalog).get();defaultDatabase = catalog.getDefaultDatabase();catalogTable = (CatalogTable) catalog.getTable(new ObjectPath(defaultDatabase, this.tableName));} catch (TableNotExistException e) {throw new HoodieException("Create table " + this.tableName + " exception", e);}ObjectIdentifier tableId = ObjectIdentifier.of(currentCatalog, defaultDatabase, this.tableName);return new TableDescriptor(tableId, catalogTable);}public DataStream source(StreamExecutionEnvironment execEnv) {TableDescriptor tableDescriptor = getTableDescriptor();return HoodiePipeline.source(execEnv, tableDescriptor.tableId, tableDescriptor.getCatalogTable());}}private static String getCreateHoodieTableDDL(String tableName,List fields,Map options,String pkField,List partitionField) {StringBuilder builder = new StringBuilder();builder.append("create table ").append(tableName).append("(\n");for (String field : fields) {builder.append(" ").append(field).append(",\n");}builder.append(" PRIMARY KEY(").append(pkField).append(") NOT ENFORCED\n").append(")\n");if (!partitionField.isEmpty()) {String partitons = partitionField.stream().map(partitionName -> "`" + partitionName + "`").collect(Collectors.joining(","));builder.append("PARTITIONED BY (").append(partitons).append(")\n");}builder.append("with ('connector' = 'hudi'");options.forEach((k, v) -> builder.append(",\n").append(" '").append(k).append("' = '").append(v).append("'"));builder.append("\n)");System.out.println(builder.toString());return builder.toString();}/*** Returns the data stream sink with given catalog table.** @param input The input datastream* @param tablePath The table path to the hoodie table in the catalog* @param catalogTable The hoodie catalog table* @param isBounded A flag indicating whether the input data stream is bounded*/private static DataStreamSink sink(DataStream input, ObjectIdentifier tablePath, CatalogTable catalogTable, boolean isBounded) {DefaultDynamicTableContext context = new DefaultDynamicTableContext(tablePath, catalogTable,Configuration.fromMap(catalogTable.getOptions()), Thread.currentThread().getContextClassLoader(), false);HoodieTableFactory hoodieTableFactory = new HoodieTableFactory();return ((DataStreamSinkProvider) hoodieTableFactory.createDynamicTableSink(context).getSinkRuntimeProvider(new SinkRuntimeProviderContext(isBounded))).consumeDataStream(input);}/*** Returns the data stream source with given catalog table.** @param execEnv The execution environment* @param tablePath The table path to the hoodie table in the catalog* @param catalogTable The hoodie catalog table*/private static DataStream source(StreamExecutionEnvironment execEnv, ObjectIdentifier tablePath, CatalogTable catalogTable) {DefaultDynamicTableContext context = new DefaultDynamicTableContext(tablePath, catalogTable,Configuration.fromMap(catalogTable.getOptions()), Thread.currentThread().getContextClassLoader(), false);HoodieTableFactory hoodieTableFactory = new HoodieTableFactory();DataStreamScanProvider dataStreamScanProvider = (DataStreamScanProvider) ((ScanTableSource) hoodieTableFactory.createDynamicTableSource(context)).getScanRuntimeProvider(new ScanRuntimeProviderContext());return dataStreamScanProvider.produceDataStream(execEnv);}/**** A POJO that contains tableId and resolvedCatalogTable.*/public static class TableDescriptor {private ObjectIdentifier tableId;private CatalogTable catalogTable;public TableDescriptor(ObjectIdentifier tableId, CatalogTable catalogTable) {this.tableId = tableId;this.catalogTable = catalogTable;}public ObjectIdentifier getTableId() {return tableId;}public CatalogTable getCatalogTable() {return catalogTable;}}private static class DefaultDynamicTableContext implements DynamicTableFactory.Context {private final ObjectIdentifier objectIdentifier;private final CatalogTable catalogTable;private final ReadableConfig configuration;private final ClassLoader classLoader;private final boolean isTemporary;DefaultDynamicTableContext(ObjectIdentifier objectIdentifier,CatalogTable catalogTable,ReadableConfig configuration,ClassLoader classLoader,boolean isTemporary) {this.objectIdentifier = objectIdentifier;this.catalogTable = catalogTable;this.configuration = configuration;this.classLoader = classLoader;this.isTemporary = isTemporary;}@Overridepublic ObjectIdentifier getObjectIdentifier() {return objectIdentifier;}@Overridepublic CatalogTable getCatalogTable() {return catalogTable;}@Overridepublic ReadableConfig getConfiguration() {return configuration;}@Overridepublic ClassLoader getClassLoader() {return classLoader;}@Overridepublic boolean isTemporary() {return isTemporary;}} }

2.WriteIntoHudi.java 使用 DataStream API将数据写入Hudi。关键实现逻辑:

第一步:Demo中的数据源来自datagen connector Table。

第二步:使用toAppendStream将Table转化为Stream。

第三步:build hudi sink stream后写入Hudi。

在项目实践中也可以直接使用DataStream源写入Hudi。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.data.RowData;
import org.apache.hudi.common.model.HoodieTableType;
import org.apache.hudi.configuration.FlinkOptions;import java.util.HashMap;
import java.util.Map;public class WriteIntoHudi {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);env.getCheckpointConfig().setCheckpointInterval(10000);tableEnv.executeSql("CREATE TABLE datagen (\n"+ "  uuid varchar(20),\n"+ "  name varchar(10),\n"+ "  age int,\n"+ "  ts timestamp(3),\n"+ "  p varchar(20)\n"+ ") WITH (\n"+ "  'connector' = 'datagen',\n"+ "  'rows-per-second' = '5'\n"+ ")");Table table = tableEnv.sqlQuery("SELECT * FROM datagen");DataStream dataStream = tableEnv.toAppendStream(table, RowData.class);String targetTable = "hudiSinkTable";String basePath = "hdfs://hacluster/tmp/flinkHudi/hudiTable";Map options = new HashMap<>();options.put(FlinkOptions.PATH.key(), basePath);options.put(FlinkOptions.TABLE_TYPE.key(), HoodieTableType.MERGE_ON_READ.name());options.put(FlinkOptions.PRECOMBINE_FIELD.key(), "ts");options.put(FlinkOptions.INDEX_BOOTSTRAP_ENABLED.key(), "true");HoodiePipeline.Builder builder = HoodiePipeline.builder(targetTable).column("uuid VARCHAR(20)").column("name VARCHAR(10)").column("age INT").column("ts TIMESTAMP(3)").column("p VARCHAR(20)").pk("uuid").partition("p").options(options);builder.sink(dataStream, false); // The second parameter indicating whether the input data stream is boundedenv.execute("Api_Sink");}
}

3.ReadFromHudi.java 使用 DataStream API读取Hudi数据。关键实现逻辑:

第一步:build hudi source stream读取hudi数据。

第二步:使用fromDataStream将stream转化为table。

第三步:将Hudi table的数据使用print connector打印输出。

在项目实践中也可以直接读取Hudi数据后写入sink DataStream。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.data.RowData;
import org.apache.hudi.common.model.HoodieTableType;
import org.apache.hudi.configuration.FlinkOptions;import java.util.HashMap;
import java.util.Map;public class ReadFromHudi {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();String targetTable = "hudiSourceTable";String basePath = "hdfs://hacluster/tmp/flinkHudi/hudiTable";Map options = new HashMap<>();options.put(FlinkOptions.PATH.key(), basePath);options.put(FlinkOptions.TABLE_TYPE.key(), HoodieTableType.MERGE_ON_READ.name());options.put(FlinkOptions.READ_AS_STREAMING.key(), "true"); // this option enable the streaming readoptions.put("read.streaming.start-commit", "20210316134557"); // specifies the start commit instant timeHoodiePipeline.Builder builder = HoodiePipeline.builder(targetTable).column("uuid VARCHAR(20)").column("name VARCHAR(10)").column("age INT").column("ts TIMESTAMP(3)").column("p VARCHAR(20)").pk("uuid").partition("p").options(options);DataStream rowDataDataStream = builder.source(env);StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);Table table = tableEnv.fromDataStream(rowDataDataStream,"uuid, name, age, ts, p");tableEnv.registerTable("hudiSourceTable",table);tableEnv.executeSql("CREATE TABLE print("+ "   uuid varchar(20),\n"+ "   name varchar(10),\n"+ "   age int,\n"+ "   ts timestamp(3),\n"+ "   p varchar(20)\n"+ ") WITH (\n"+ " 'connector' = 'print'\n"+ ")");tableEnv.executeSql("insert into print select * from hudiSourceTable");env.execute("Api_Source");}
}

4.在项目实践中如果有解析Kafka复杂Json的需求:

1)使用FlinkSQL: https://bbs.huaweicloud.com/forum/thread-153494-1-1.html

2)使用Flink DataStream MapFunction实现。

点击关注,第一时间了解华为云新鲜技术~

 


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部