linux内存管理_五分钟彻底搞懂你一直没明白的Linux内存管理

320517ddd1c2d0bac08c71348efdd90e.png00837b21c6dab38bf23230daf362b171.png

作者:WsztRush

来源:https://urlify.cn/6VvYvq

现在的服务器大部分都是运行在Linux上面的,所以,作为一个程序员有必要简单地了解一下系统是如何运行的。对于内存部分需要知道:

  1. 地址映射

  2. 内存管理的方式

  3. 缺页异常

先来看一些基本的知识,在进程看来,内存分为内核态和用户态两部分,经典比例如下:

52785506a9615343c26d99fe2e9ae29f.png

从用户态到内核态一般通过系统调用、中断来实现。用户态的内存被划分为不同的区域用于不同的目的:

62e00ac7da0e888330a362b27093d481.png

当然内核态也不会无差别地使用,所以,其划分如下:

26bb8e87d79fc72d1ef60be2b522340b.png

下面来仔细看这些内存是如何管理的。

地址

在Linux内部的地址的映射过程为逻辑地址–>线性地址–>物理地址,物理地址最简单:地址总线中传输的数字信号,而线性地址和逻辑地址所表示的则是一种转换规则,线性地址规则如下:

fa2dde604da22a4cdb1efde7be62e2bb.png

这部分由MMU完成,其中涉及到主要的寄存器有CR0、CR3。机器指令中出现的是逻辑地址,逻辑地址规则如下:

37a1d62e4dfb1d22d02f584cf1eda1d3.png

在Linux中的逻辑地址等于线性地址,也就是说Inter为了兼容把事情搞得很复杂,Linux简化顺便偷个懒。

内存管理的方式

在系统boot的时候会去探测内存的大小和情况,在建立复杂的结构之前,需要用一个简单的方式来管理这些内存,这就是bootmem,简单来说就是位图,不过其中也有一些优化的思路。

bootmem再怎么优化,效率都不高,在要分配内存的时候毕竟是要去遍历,buddy系统刚好能解决这个问题:在内部保存一些2的幂次大小的空闲内存片段,如果要分配3page,去4page的列表里面取一个,分配3个之后将剩下的1个放回去,内存释放的过程刚好是一个逆过程。用一个图来表示:

ecb29494a51b0f438a2e2ace6e63270b.png

可以看到0、4、5、6、7都是正在使用的,那么,1、2被释放的时候,他们会合并吗?

static inline unsigned long

__find_buddy_index(unsigned long page_idx, unsigned int order)

{

   return page_idx ^ (1 << order);// 更新最高位,0~1互换

}

从上面这段代码中可以看到,0、1是buddy,2、3是buddy,虽然1、2相邻,但他们不是。内存碎片是系统运行的大敌,伙伴系统机制可以在一定程度上防止碎片~~另外,我们可以通过cat /proc/buddyinfo获取到各order中的空闲的页面数。

伙伴系统每次分配内存都是以页(4KB)为单位的,但系统运行的时候使用的绝大部分的数据结构都是很小的,为一个小对象分配4KB显然是不划算了。Linux中使用slab来解决小对象的分配:

33e2965b517c55888013087e641d4765.png

在运行时,slab向buddy“批发”一些内存,加工切块以后“散卖”出去。随着大规模多处理器系统和NUMA系统的广泛应用,slab终于暴露出不足:

  1. 复杂的队列管理

  2. 管理数据和队列存储开销较大

  3. 长时间运行partial队列可能会非常长

  4. 对NUMA支持非常复杂

为了解决这些高手们开发了slub:改造page结构来削减slab管理结构的开销、每个CPU都有一个本地活动的slab(kmem_cache_cpu)等。对于小型的嵌入式系统存在一个slab模拟层slob,在这种系统中它更有优势。

小内存的问题算是解决了,但还有一个大内存的问题:用伙伴系统分配10 x 4KB的数据时,会去16 x 4KB的空闲列表里面去找(这样得到的物理内存是连续的),但很有可能系统里面有内存,但是伙伴系统分配不出来,因为他们被分割成小的片段。那么,vmalloc就是要用这些碎片来拼凑出一个大内存,相当于收集一些“边角料”,组装成一个成品后“出售”:

4a7a7e6f157f5acb779abdcfcb8ccd3d.png

之前的内存都是直接映射的,第一次感觉到页式管理的存在:D 另外对于高端内存,提供了kmap方法为page分配一个线性地址。

进程由不同长度的段组成:代码段、动态库的代码、全局变量和动态产生数据的堆、栈等,在Linux中为每个进程管理了一套虚拟地址空间:

d7629c5a2872f839ea84e0e2d1077740.png

在我们写代码malloc完以后,并没有马上占用那么大的物理内存,而仅仅是维护上面的虚拟地址空间而已,只有在真正需要的时候才分配物理内存,这就是COW(COPY-ON-WRITE:写时复制)技术,而物理分配的过程就是最复杂的缺页异常处理环节了,下面来看!

缺页异常

在实际需要某个虚拟内存区域的数据之前,和物理内存之间的映射关系不会建立。如果进程访问的虚拟地址空间部分尚未与页帧关联,处理器自动引发一个缺页异常。在内核处理缺页异常时可以拿到的信息如下:

  1. cr2:访问到线性地址

  2. err_code:异常发生时由控制单元压入栈中,表示发生异常的原因

  3. regs:发生异常时寄存器的值

处理的流程如下:

9c87e519518a8b99664f4d28500612c5.png

发生缺页异常的时候,可能因为不常使用而被swap到磁盘上了,swap相关的命令如下:

07468a3853ac0bca9fd5b3c9375bd789.png

如果内存是mmap映射到内存中的,那么在读、写对应内存的时候也会产生缺页异常。

良许个人微信

添加良许个人微信即送3套程序员必读资料

→ 精选技术资料共享

→ 高手如云交流社群

1a4896ed86b4bc42477ae40e1e70b1da.png

本公众号全部博文已整理成一个目录,请在公众号里回复「m」获取!

推荐阅读:

卧槽!VSCode 上竟然也能画流程图了???

统统卸载!再见了,流氓顽固软件!

IP 基础知识“全家桶”,45 张图一套带走

5T技术资源大放送!包括但不限于:C/C++,Linux,Python,Java,PHP,人工智能,单片机,树莓派,等等。在公众号内回复「1024」,即可免费获取!!

e3d53cfc56884713efe1035640c85c32.png


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部