import tensorflow as tf
sess = tf.Session()
zero_tsr = tf.zeros([3,4])
print(zero_tsr,"\n")
print(sess.run(zero_tsr))
Tensor("zeros_9:0", shape=(3, 4), dtype=float32) [[0. 0. 0. 0.][0. 0. 0. 0.][0. 0. 0. 0.]]
ones_tsr = tf.ones([3,3])
print(ones_tsr,"\n")
print(sess.run(ones_tsr))
Tensor("ones_2:0", shape=(3, 3), dtype=float32) [[1. 1. 1.][1. 1. 1.][1. 1. 1.]]
filled_tsr = tf.fill([2,3],9)
print(filled_tsr,"\n")
print(sess.run(filled_tsr))
Tensor("Fill_1:0", shape=(2, 3), dtype=int32) [[9 9 9][9 9 9]]
constant_tsr = tf.constant([[[1,2,3],[4,5,6]]])
print(constant_tsr,"\n")
print(sess.run(constant_tsr))
Tensor("Const_6:0", shape=(1, 2, 3), dtype=int32) [[[1 2 3][4 5 6]]]
zeros_similar = tf.zeros_like(constant_tsr,name="zeros_similar")
print(zeros_similar,"\n")
print(sess.run(zeros_similar))
Tensor("zeros_similar:0", shape=(1, 2, 3), dtype=int32) [[[0 0 0][0 0 0]]]
linear_tsr = tf.linspace(0.0,1,3)
print(linear_tsr,"\n")
print(sess.run(linear_tsr))
integer_seq_tsr = tf.range(6,15,3)
print(integer_seq_tsr,"\n")
print(sess.run(integer_seq_tsr))
Tensor("LinSpace_6:0", shape=(3,), dtype=float32) [0. 0.5 1. ]
Tensor("range:0", shape=(3,), dtype=int32) [ 6 9 12]
randunif_tsr = tf.random_uniform([3,5],0,1)
print(randunif_tsr,"\n")
print(sess.run(randunif_tsr))
Tensor("random_uniform_1:0", shape=(3, 5), dtype=float32) [[4.2316258e-01 3.0471754e-01 7.6630473e-01 8.1790626e-01 5.0046563e-01][6.5109611e-02 8.3112717e-01 6.9167531e-01 3.5631657e-04 4.5146310e-01][8.7746727e-01 1.7722619e-01 3.1525445e-01 6.7187238e-01 6.2367332e-01]]
my_var =tf.Variable(tf.zeros([3,5]))
print(my_var,"\n")
"""三步走,第一步是 导入 tensorflow 第二步 启动图 tf.Session() 第三步 封装张量 tf.Variable()
先启动,然后声明定义,最终进行封装-变量来封装张量 var封装tsr
"""
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!