XVII Open Cup named after E.V. Pankratiev. GP of Moscow Workshops

A. Centroid Tree

枚举至多两个重心作为根,检查对于每个点是否都满足$2size[x]\leq size[father[x]]$即可。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n, m;
vectora[N];
int root;
int treesz;
int sz[N];
int mxp[N];
bool done[N];
int v[N];
bool FLAG;vectorvt;
int getsz(int x, int fa)
{sz[x] = 1;for (auto y : a[x])if (y != fa && !done[y]){sz[x] += getsz(y, x);}return sz[x];
}
void getroot(int x, int fa)
{mxp[x] = treesz - sz[x];// root = 0;for (auto y : a[x])if (y != fa && !done[y]){getroot(y, x);gmax(mxp[x], sz[y]);}if (mxp[x] < mxp[root]){root = x;vt.clear(); vt.push_back(x);}else if (mxp[x] == mxp[root]){vt.push_back(x);}
}bool check(int x, int fa)
{sz[x] = 1;for (auto y : a[x]){if (y == fa)continue;if (!check(y, x))return 0;sz[x] += sz[y];}for (auto y : a[x]){if (y == fa)continue;if (sz[y] * 2 > sz[x])return 0;}return 1;
}bool dfz(int x)
{vt.clear();treesz = getsz(x, 0);getroot(x, root = 0);for (auto y : vt){if (check(y, 0))return 1;}return 0;
}
int main()
{//fre();mxp[0] = inf;scanf("%d%d", &casenum, &n);for (casei = 1; casei <= casenum; ++casei){for (int i = 1; i <= n; ++i){done[i] = 0;a[i].clear();}for (int i = 1; i < n; ++i){int x, y;scanf("%d%d", &x, &y);a[x].push_back(y);a[y].push_back(x);}puts(dfz(1) ? "Centroid" : "Random");}return 0;
}
/*2 7
1 2
2 3
3 4
4 5
5 6
6 7
1 2
1 3
2 4
2 5
3 6
3 71 7
1 2
1 3
2 4
2 5
3 6
3 71 4
1 2
2 3
3 4
*/

  

B. Completely Multiplicative Function

爆搜每个质数是$1$还是$-1$,加上前$n$项的前缀和的绝对值必须小于$\log n$的剪枝即可通过。

更好的做法:对于质数$p$,若$p\bmod 3=1$,则填$1$,否则填$-1$。

#include
#include
using namespace std;
const int N = 1e6 + 10;
char mu[N] =
{0,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1
};
int f[N];
int first[N];
int fac[N];
int prim[N], pnum;
int n;
int lg2[N];void check()
{for (int i = 1; i <= n; i++) f[i] = f[i - 1] + mu[i];for (int i = 1; i <= n; i++)if (abs(f[i]) > 20){printf("f[%d] = %d\n", i, f[i]);while (1);}for (int i = 1; i <= n; ++i){for (int j = 1; i * j <= n; ++j){if (mu[i * j] != mu[i] * mu[j]){printf("%d %d %d %d %d %d\n", i, j, i *j, mu[i], mu[j], mu[i * j]);puts("ERROR");while (1);}}}
}bool FLAG;
inline char abs(char x) { return x > 0 ? x : -x; }
void dfs(int x,char y)
{if (x > n){//puts("YES!");FLAG = 1;return;}while (fac[x]){mu[x] = mu[fac[x]] * mu[first[x]];y+=mu[x];if (abs(y) > lg2[x])return;++x;}if (x > n){//puts("YES!");FLAG = 1;return;}{mu[x] = 1;y++;if (abs(y) <= lg2[x]){dfs(x + 1,y);}if (FLAG)return;mu[x] = -1;y -= 2;if (abs(y) <= lg2[x]){dfs(x + 1,y);}}
}void getprime()
{fac[1] = 1;for (int i = 2; i < N; i++){if (fac[i])continue;prim[pnum++] = i;for (int j = i + i; j < N; j += i){fac[j] = i;}}
}int main()
{getprime();//printf("%d\n", pnum);n = 1e6; fac[n + 1] = 0;lg2[1] = 1;for (int i = 2; i <= n; ++i){lg2[i] = lg2[i / 2] + 1;if (fac[i]){first[i] = i / fac[i];}}for (int i = 1; i <= 820; ++i)f[i] = f[i - 1] + mu[i];dfs(821,f[820]);//check();//for (int i = 1; i <= 3000; i++) printf("%d,", mu[i]);scanf("%d", &n);//n = 10;//for (int i = 1; i <= n; i++)if(!fac[i]) printf("%d %d\n", i,mu[i]);for (int i = 1; i <= n; i++)printf("%d%c", mu[i], i == n ? '\n' : ' ');return 0;
}

  

C. Even and Odd

求出DFS生成树,只保留树边。

对于每个基环,若它是奇环,那么上面的树边都不能保留;若它是偶环,那么若它与某个奇环相交,将会得到更大的奇环,这些边也不能保留。

用并查集维护每个点向上第一条未删去的树边,树状数组判断路径上是否存在奇环,迭代删除$O(\log n)$轮即可。如果直接用并查集维护有交的树边集合,那么只要集合内存在基本奇环则要删除,可以做到更优秀的复杂度。

预处理结束后,对于每个连通块,当成树统计答案即可。

时间复杂度$O(n\log^2n)$。

#include
const int N=200010,M=400010;
int n,m,i,x,y,g[N],v[M],nxt[M],ed;
int d[N],f[N],vis[N],dfn;
int fa[N],c[N][2];
int dep[N],gg[N];
int q[N],V[M],NXT[M],ED;
int st[N],en[N],lim,bit[M];
long long ans[2];
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
int G(int x){return gg[x]==x?x:gg[x]=G(gg[x]);}
inline void ADD(int x,int y){V[++ED]=y;NXT[ED]=q[x];q[x]=ED;}
inline void modify(int x,int p){for(;x<=lim;x+=x&-x)bit[x]+=p;}
inline int ask(int x){int t=0;for(;x;x-=x&-x)t+=bit[x];return t;}
inline void go(int x,int y){//printf("go %d %d\n",x,y);while(1){x=G(x);if(dep[x]<=dep[y])return;//printf("del %d\n",x);modify(st[x],1);modify(en[x],-1);gg[x]=f[x];}
}
void dfs1(int x,int y){f[x]=y;vis[x]=++dfn;d[x]=d[y]^1;dep[x]=dep[y]+1;gg[x]=x;st[x]=++lim;for(int i=g[x];i;i=nxt[i]){int u=v[i];if(u==y)continue;if(!vis[u]){//printf("%d->%d\n",x,u);dfs1(u,x);}}en[x]=++lim;
}
void dfs2(int x,int y){vis[x]=++dfn;for(int i=g[x];i;i=nxt[i]){int u=v[i];if(u==y)continue;if(!vis[u]){dfs2(u,x);}else if(vis[u]ask(st[x]))go(u,x);}    
}
int F(int x){return fa[x]==x?x:fa[x]=F(fa[x]);}
inline void merge(int x,int y){//printf("merge %d %d\n",x,y);x=F(x),y=F(y);fa[x]=y;ans[0]+=1LL*c[x][0]*c[y][0];ans[0]+=1LL*c[x][1]*c[y][1];ans[1]+=1LL*c[x][0]*c[y][1];ans[1]+=1LL*c[x][1]*c[y][0];c[y][0]+=c[x][0];c[y][1]+=c[x][1];
}
int main(){scanf("%d%d",&n,&m);for(i=1;i<=m;i++){scanf("%d%d",&x,&y);add(x,y),add(y,x);}dfs1(1,0);for(i=1;i<=n;i++)vis[i]=0;for(int _=10;_;_--){for(i=1;i<=n;i++)vis[i]=q[i]=0;dfn=ED=0;dfs2(1,0);}for(i=1;i<=n;i++)fa[i]=i,c[i][d[i]]=1;for(i=2;i<=n;i++)if(gg[i]==i)merge(i,f[i]);printf("%lld %lld",ans[0],ans[1]);
}
/*
4 3
1 2
1 3
1 44 4
1 2
2 3
3 4
4 25 6
1 2
2 3
3 4
4 5
1 4
3 54 5
1 2
1 3
2 4
3 4
2 36 8
1 2
1 3
2 4
3 4
3 5
4 5
4 6
5 6
*/

  

D. Great Again

设$f[i]$表示前$i$个人分组的最大得分,枚举当前段的得分,线段树优化转移即可。

时间复杂度$O(n\log n)$。

#include
#include
#include
#include
using namespace std;
const int N=300010,M=2222222;
int n,m,j,L,R,i,lim,tmp,a[N],f[N];
int v[M];
multisetT[N*2];
void build(int x,int a,int b){v[x]=-M;if(a==b)return;int mid=(a+b)>>1;build(x<<1,a,mid),build(x<<1|1,mid+1,b);
}
inline void up(int x){v[x]=max(v[x<<1],v[x<<1|1]);}
void ins(int x,int a,int b,int c,int p){if(a==b){T[a].insert(p);v[x]=*T[a].rbegin();return;}int mid=(a+b)>>1;if(c<=mid)ins(x<<1,a,mid,c,p);else ins(x<<1|1,mid+1,b,c,p);up(x);
}
void del(int x,int a,int b,int c,int p){if(a==b){T[a].erase(T[a].find(p));if(T[a].empty())v[x]=-M;elsev[x]=*T[a].rbegin();return;}int mid=(a+b)>>1;if(c<=mid)del(x<<1,a,mid,c,p);else del(x<<1|1,mid+1,b,c,p);up(x);
}
int ask(int x,int a,int b,int c,int d){if(c<=a&&b<=d)return v[x];int mid=(a+b)>>1,t=-M;if(c<=mid)t=ask(x<<1,a,mid,c,d);if(d>mid)t=max(t,ask(x<<1|1,mid+1,b,c,d));return t;
}
int main(){scanf("%d%d%d",&n,&L,&R);for(i=1;i<=n;i++){scanf("%d",&a[i]);a[i]+=a[i-1];}m=n+n;for(i=0;i<=n;i++)a[i]+=n;//0..mbuild(1,0,m);for(i=1,j=0;i<=n;i++){if(i>=L)ins(1,0,m,a[i-L],f[i-L]);if(i-R-1>=0)del(1,0,m,a[i-R-1],f[i-R-1]);f[i]=ask(1,0,m,a[i],a[i]);if(a[i]>0)f[i]=max(f[i],ask(1,0,m,0,a[i]-1)+1);if(a[i]

  

E. Jumping is Fun

每个点不管跳多少步,能到达的范围必然是一个区间。

设$f[i][j]$表示$j$点跳$2^i$步能到的范围,可以用线段树求出。

从高到低枚举答案的二进制的每一位,利用$f$数组求出范围,然后枚举$x$,判断是否存在$y$满足$x$与$y$都不能相互到达即可。

时间复杂度$O(n\log^2n)$。

#include
#include
using namespace std;
const int N=200010,M=530000,K=18;
int n,i,j,x,pre[N],suf[N],ans;
struct P{int x,y;P(){}P(int _x,int _y){x=_x,y=_y;}P operator+(const P&b){return P(min(x,b.x),max(y,b.y));}
}f[K][N],v[K][M],a[N],b[N];
void build(int o,int x,int a,int b){if(a==b){v[o][x]=f[o][a];return;}int mid=(a+b)>>1;build(o,x<<1,a,mid),build(o,x<<1|1,mid+1,b);v[o][x]=v[o][x<<1]+v[o][x<<1|1];
}
P ask(int o,int x,int a,int b,int c,int d){if(c<=a&&b<=d)return v[o][x];int mid=(a+b)>>1;P t(N,1);if(c<=mid)t=ask(o,x<<1,a,mid,c,d);if(d>mid)t=t+ask(o,x<<1|1,mid+1,b,c,d);return t;
}
inline P go(int o,P b){//if(b.x<1||b.y>n)puts("ERROR");return ask(o,1,1,n,b.x,b.y);
}
inline bool check(int o){//printf("now check %d\n",o);int i;for(i=1;i<=n;i++)b[i]=go(o,a[i]);pre[0]=N;for(i=1;i<=n;i++)pre[i]=min(pre[i-1],b[i].y);suf[n+1]=0;for(i=n;i;i--)suf[i]=max(suf[i+1],b[i].x);for(i=1;i<=n;i++){if(pre[b[i].x-1]i){//printf("to suf x=%d\n",i);return 1;}}return 0;
}
int main(){scanf("%d",&n);for(i=1;i<=n;i++){scanf("%d",&x);f[0][i].x=max(1,i-x);f[0][i].y=min(n,i+x);}build(0,1,1,n);for(i=1;i%d %d %d\n",i,a[i].x,a[i].y);}for(i=K-1;~i;i--){if(check(i)){//printf("checkok %d\n",i);//for(j=1;j<=n;j++)printf("a[%d]=%d %d\n",j,a[j].x,a[j].y);for(j=1;j<=n;j++)a[j]=b[j];//for(j=1;j<=n;j++)printf("b[%d]=%d %d\n",j,a[j].x,a[j].y);ans|=1<

  

F. Online LCS

将两个串插入同一个后缀自动机,同时维护$v[i][j]$表示节点$i$表示的子串集合是否在串$j$中出现过。

每次加入新的字符的时候,将对应节点到根路径上所有$v$都标记为$1$,当$v[i][0]$与$v[i][1]$同时为$1$时,可以用它的最大长度去更新最长公共子串的长度。

注意到每个点在每种串中只需要被标记一次,故发现标记过则退出即可。

时间复杂度$O(n)$。

#include
#include
const int N=5000010;//5e6
int tot=1,last[2]={1,1},pre[N*2],son[N*2][2],ml[N*2];bool v[N*2][2];
int n,i,ans;long long sum;char a[N];
inline void extend(int o,int w){int p=++tot,x=last[o],r,q;for(ml[last[o]=p]=ml[x]+1;x&&!son[x][w];x=pre[x])son[x][w]=p;if(!x)pre[p]=1;else if(ml[x]+1==ml[q=son[x][w]])pre[p]=q;else{pre[r=++tot]=pre[q];memcpy(son[r],son[q],sizeof son[r]);v[r][0]=v[q][0];v[r][1]=v[q][1];ml[r]=ml[x]+1;pre[p]=pre[q]=r;for(;x&&son[x][w]==q;x=pre[x])son[x][w]=r;}while(p&&!v[p][o]){v[p][o]=1;if(v[p][o^1]&&ml[p]>ans)ans=ml[p];p=pre[p];}
}
int main(){scanf("%d%s",&n,a);for(i=0;i

  

G. Brawling

只有左侧朝左的若干人以及右侧朝右的若干人不能保留。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 1e6 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
char s[N];
int n;
int solve()
{int l = 1;while(l <= n && s[l] != 'R')++l;int r = n;while(r >= 1 && s[r] != 'L')--r;//a[l] = 'L', a[r] = 'R'if(l < r){int sub = r - l + 1 - 1;return n - sub;}else{return n;}
}
int main()
{while(~scanf("%s", s + 1)){n = strlen(s + 1);printf("%d\n", solve());}return 0;
}
/*
【trick&&吐槽】【题意】【分析】【时间复杂度&&优化】*/

  

H. I Spy

随机选择一个点$P=(x,y)$,在附近找一个辅助点$Q=(x+1,y)$。

因为随机选择,故可以认为对于$P$和$Q$,没有任意两个点离它们的距离相同。

二分半径求出离$P$和$Q$最近的两个点到它们的距离$R_1,R_2$,得到两个圆,在交点附近检查是否存在点即可。

如此反复,即可找出所有点的位置。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n;
LL X0, Y0;
LL X1, Y1;
set< pair >know;
LL sqr(LL X)
{return X * X;
}
bool IN(LL X0, LL Y0, LL X1, LL Y1, LL R)
{return sqr(X0 - X1) + sqr(Y0 - Y1) <= R;
}
bool check(LL X, LL Y, LL R)
{printf("? %lld %lld %lld\n", X, Y, R);fflush(stdout);int num;scanf("%d", &num);for (auto it : know){if (IN(it.first, it.second, X, Y, R))--num;}return num;
}
LL GETR(LL X, LL Y)
{LL L = 0;LL R = 1e13;while (L < R){LL MID = (L + R >> 1);if (check(X, Y, MID))R = MID;else L = MID + 1;}return L;
}namespace YUAN
{struct point{double x, y;point() {}point(double a, double b) : x(a), y(b) {}friend point operator + (const point &a, const point &b) {return point(a.x + b.x, a.y + b.y);}friend point operator - (const point &a, const point &b) {return point(a.x - b.x, a.y - b.y);}friend point operator * (const point &a, const double &b) {return point(a.x * b, a.y * b);}friend point operator * (const double a, const point &b) {return point(a * b.x, a * b.y);}friend point operator / (const point &a, const double &b) {return point(a.x / b, a.y / b);}double norm() {return sqrt(sqr(x) + sqr(y));}};point rotate(const point &p, double cost, double sint){double x = p.x, y = p.y;return point(x * cost - y * sint, x * sint + y * cost);}// 圆与圆求交, ap,bp 两个圆的圆心, ar,br 两个圆的半径。 输出两个交点(要先确认两圆存在交点)pair crosspoint(point ap, double ar, point bp, double br){double d = (ap - bp).norm();double cost = (ar * ar + d * d - br * br) / (2 * ar * d);double sint = sqrt(1. - cost * cost);point v = (bp - ap) / (bp - ap).norm() * ar;return make_pair(ap + rotate(v, cost, -sint), ap + rotate(v, cost, sint));}
}using namespace YUAN;void check_ans(LL X, LL Y)
{for (int i = -2; i <= 2; ++i){for (int j = -2; j <= 2; ++j){LL x = X + i;LL y = Y + j;if (abs(x) > 1e6 || abs(y) > 1e6)continue;if (check(x, y, 0)){know.insert({ x,y });}}}
}
int main()
{X0 = rand() * rand() % 900000;Y0 = rand() * rand() % 900000;X1 = X0;Y1 = Y0 + 1;scanf("%d", &n);while (know.size() < n){LL R0 = GETR(X0, Y0);LL R1 = GETR(X1, Y1);pairans = crosspoint({ 1.0*X0,1.0*Y0 }, sqrt(R0), { 1.0*X1,1.0*Y1 }, sqrt(R1));check_ans(ans.first.x, ans.first.y);check_ans(ans.second.x, ans.second.y);}printf("!");for (auto it : know){printf(" %lld %lld", it.first, it.second);}puts("");fflush(stdout);return 0;
}
/*
【trick&&吐槽】【题意】【分析】【时间复杂度&&优化】【数据】*/

  

I. Rage Minimum Query

若修改是往小修改,那么显然可以$O(1)$直接更新全局最小值。

否则若目前是将最小值往大了修改,那么这是小概率事件,直接$O(n)$重算全局最小值即可。

#include
typedef unsigned int U;
int n,q;
U x0,x1,a,b,c,i,x,v[10000010],mi,ans,p=1;
inline U nxt(){U t=x0*a+x1*b+c;x0=x1;x1=t;return x0>>2;
}
int main(){scanf("%d%d%u%u%u%u%u",&n,&q,&x0,&x1,&a,&b,&c);for(i=0;i>1;mi=~0U>>1;while(q--){i=nxt()%n;x=nxt();if(x<=v[i]){if(xmi){v[i]=x;}else{v[i]=x;mi=x;for(i=0;i

  

J. Regular Cake

在正$n$边形与正$m$边形之间紧贴一个正$lcm(n,m)$边形,可以得到答案为:

\[\frac{\cos\left(\frac{\pi}{lcm(n,m)}\right)\tan\left(\frac{\pi}{m}\right)}{\sin\left(\frac{\pi}{n}\right)}\]

#include
#include
typedef long long ll;
using namespace std;
const double pi=acos(-1.0);
ll n,m,k;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
int main(){scanf("%lld%lld",&n,&m);k=n*m/gcd(n,m);printf("%.13f",cos(pi/k)*tan(pi/m)/sin(pi/n));
}

  

K. Piecemaking

树形DP,设$f[i][j]$表示考虑$i$的子树,$i$点颜色为$j$的最小代价。

时间复杂度$O(n)$。

#include
#include
using namespace std;
typedef long long ll;
const int N=200010;
const ll inf=1LL<<60;
int n,m,i,x,y,z,g[N],v[N<<1],w[N<<1],nxt[N<<1],ed;
int col[N];
ll f[N][3],h[3],ans;
inline void up(ll&a,ll b){a>b?(a=b):0;}
inline void add(int x,int y,int z){v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
void dfs(int x,int y){for(int i=0;i<3;i++)f[x][i]=inf;f[x][col[x]]=0;for(int i=g[x];i;i=nxt[i]){int u=v[i];if(u==y)continue;dfs(u,x);for(int j=0;j<3;j++)h[j]=inf;for(int j=0;j<3;j++)if(f[x][j]

  


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章