根据nba数据预测17-18总冠军(转)

#coding=utf-8
import urllib
import re
import csv
import sys#计数,初始化
count = 0
#以下定义的与之对应的是球员姓名、赛季、胜负、比赛、首发、时间、投篮命中率、投篮命中数、投篮出手数、三分命中率、三分命中数、三分出手数、罚球命中率、罚球命中数、罚球次数、总篮板数、前场篮板数、后场篮板数、助攻数、抢断数、盖帽数、失误数、犯规数、得分
list0 = []
list1 = []
list2 = []
list3 = []
list4 = []
list5 = []
list6 = []
list7 = []
list8 = []
list9 = []
list10 = []
list11 = []
list12 = []
list13 = []
list14 = []
list15 = []
list16 = []
list17 = []
list18 = []
list19 = []
list20 = []
list21 = []
list22 = []
list23 = []
list24 = []
list25 = []
list26 = []
#定义获取页面函数
def getHtml(url):page = urllib.urlopen(url)html = page.read()return html
#获取数据并存入数据库中
for k in range(0,51):#获取当前页面,该页面只有LBJ的职业生涯常规赛的数据,截止到2016.12.26html = getHtml("http://www.stat-nba.com/query.php?QueryType=game&GameType=season&Player_id=1862&crtcol=season&order=1&page=" + str(k))# 获取球员姓名、赛季、胜负、比赛、首发、时间、投篮命中率、投篮命中数、投篮出手数、三分命中率、三分命中数、三分出手数、罚球命中率、罚球命中数、罚球次数、总篮板数、前场篮板数、后场篮板数、助攻数、抢断数、盖帽数、失误数、犯规数、得分#正则得到相对应的数值playerdata = re.findall(r'(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(\D*|76人)(\d+)-(\d+)(\D*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*%|\s*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*%|\s*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*%|\s*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)'r'\s*(.*)', html)#获取每条数据,for data in playerdata:#将元组数据复制给列表,进行修改,数据中有空值,和含有%号的值,进行处理,得到数值data1 = [data[0], data[1], data[2], data[3], int(data[4]), data[5], data[6], data[7], data[8], data[9],data[10], data[11], data[12], data[13], data[14], data[15], data[16], data[17], data[18], data[19],data[20], data[21], data[22], data[23], data[24], data[25], data[26]]
#将百分号去掉,只保留数值部分if (data1[15] == ' '):data1[15] = 0else:data1[15] = float("".join(re.findall(r'(.*)%', data1[15])))if (data1[9] == ' '):data1[9] = 0else:data1[9] = float("".join(re.findall(r'(.*)%', data1[9])))if (data1[12] == ' '):data1[12] = 0else:data1[12] = float("".join(re.findall(r'(.*)%', data1[12])))list0.append(data1[0])list1.append(data1[1])list2.append(data1[2])list3.append(data1[3])list4.append(data1[4])list5.append(data1[5])list6.append(data1[6])list7.append(data1[7])list8.append(data1[8])list9.append(data1[9])list10.append(data1[10])list11.append(data1[11])list12.append(data1[12])list13.append(data1[13])list14.append(data1[14])list15.append(data1[15])list16.append(data1[16])list17.append(data1[17])list18.append(data1[18])list19.append(data1[19])list20.append(data1[20])list21.append(data1[21])list22.append(data1[22])list23.append(data1[23])list24.append(data1[24])list25.append(data1[25])list26.append(data1[26])# 记录数据数量count += 1#建立csv存储文件,wb写 a+追加模式
csvfile = file('nbadata.csv', 'ab+')
writer = csv.writer(csvfile)
#将提取的数据合并
data2 = []for i in range(0,count):data2.append((list0[i],list1[i],list2[i],list3[i],list4[i],list5[i],list6[i],list7[i],list8[i],list9[i],list10[i],list11[i],list12[i],list13[i],list14[i],list15[i],list16[i],list17[i],list18[i],list19[i],list20[i],list21[i],list22[i],list23[i],list24[i], list25[i],list26[i]))#将合并的数据存入csv
writer.writerows(data2)
csvfile.close()
import csv#文件路径
srcFilePath = "c:/myflask/nbadata.csv"
#读取cvs格式的数据文件
reader = csv.reader(file(srcFilePath,'rb'))
#csv中各列属性代表的含义(1)代表第一列
# 球员姓名(1)、赛季(2)、胜负(3)、对手球队名称(4)、对手球队总得分(5)、己方球队总得分(6)
# 、己方球队名称(7)、首发(8)【1为首发,0为替补】、上场时间(9)、投篮命中率(10)、投篮命中数(11)
# 、投篮出手数(12)、三分命中率(13)、三分命中数(14)、三分出手数(15)、罚球命中率(16)
# 、罚球命中数(17)、罚球次数(18)、总篮板数(19)、前场篮板数(20)、后场篮板数(21)、助攻数(22)
# 、抢断数(23)、盖帽数(24)、失误数(25)、犯规数(26)、得分(27)

records = [line for line in reader]frame = DataFrame(records)#获取得分数对应的场次数目

pts_count = frame[26].value_counts()
a = []
b = []for i in pts_count.keys():a.append(i)
for i in pts_count:b.append(i)
c = {}
for i in range(0,len(a)):c[int(a[i])] = int(b[i])d = sorted(c.items(), key=lambda c:c[0])
#存储得分分数
e = []
#存储相应分数的次数
f = []
for i in d:e.append(i[0])f.append(i[1])#15-16赛季球员得分助攻篮板抢断盖帽平均值
records_p1 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '03-04']
records_p2 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '04-05']
records_p3 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '05-06']
records_p4 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '06-07']
records_p5 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '07-08']
records_p6 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '08-09']
records_p7 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '09-10']
records_p8 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '10-11']
records_p9 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '11-12']
records_p10 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '12-13']
records_p11 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '13-14']
records_p12 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '14-15']
records_p13 = [(int(line[26]),int(line[21]),int(line[18]),int(line[22]),int(line[23])) for line in records if line[1] == '15-16']g1 = [float('%0.1f' % i) for i in DataFrame(records_p1).mean()]
g2 = [float('%0.1f' % i) for i in DataFrame(records_p2).mean()]
g3 = [float('%0.1f' % i) for i in DataFrame(records_p3).mean()]
g4 = [float('%0.1f' % i) for i in DataFrame(records_p4).mean()]
g5 = [float('%0.1f' % i) for i in DataFrame(records_p5).mean()]
g6 = [float('%0.1f' % i) for i in DataFrame(records_p6).mean()]
g7 = [float('%0.1f' % i) for i in DataFrame(records_p7).mean()]
g8 = [float('%0.1f' % i) for i in DataFrame(records_p8).mean()]
g9 = [float('%0.1f' % i) for i in DataFrame(records_p9).mean()]
g10 = [float('%0.1f' % i) for i in DataFrame(records_p10).mean()]
g11 = [float('%0.1f' % i) for i in DataFrame(records_p11).mean()]
g12 = [float('%0.1f' % i) for i in DataFrame(records_p12).mean()]
g13 = [float('%0.1f' % i) for i in DataFrame(records_p13).mean()]app = Flask(__name__)#引入bootstrap前端框架
bootstrap = Bootstrap(app)
@app.route('/')
def hello_world():return render_template('index.html', a=e, b=f, c1=g1,c2=g2,c3=g3,c4=g4,c5=g5,c6=g6,c7=g7,c8=g8,c9=g9,c10=g10,c11=g11,c12=g12,c13=g13)if __name__ == '__main__':app.run(debug=True)
index.html{% extends "base.html" %}
{% block title %}Flasky{% endblock %}
{% block page_content %}
class="page-header">

数据分析

"main" style="height:400px; width: auto">"main2" style="height:600px; width: auto; background-color: #333">"s1" style="height:600px; width: auto">
 

 

{% endblock %}

 

转载于:https://www.cnblogs.com/runningzz/p/7067814.html


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部