【各种**问题系列】雪花(Snow Flake)算法(分布式ID生成器)

        雪花算法是由Twitter公布的分布式主键生成算法,它能够保证不同表的主键不重复性,以及相同表的主键有序性。

核心思想:

        使用长度为64bit(一个long型)进行存储,首先是一个符号位,1bit标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般为正数,最高位为0。

        41bit时间截(毫秒级),存储的是时间截的差值(当前时间截 - 开始时间截),结果约等于69.73年。

        10bit作为机器的ID(5bit是数据中心,5bit的机器ID,可以部署在1024个节点)

        12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生4095个ID)

 
public class IdWorker {//因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。//机器ID  2进制5位  32位减掉1位 31个private long workerId;//机房ID 2进制5位  32位减掉1位 31个private long datacenterId;//代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个private long sequence;//设置一个时间初始值    2^41 - 1   差不多可以用69年private long twepoch = 1585644268888L;//5位的机器idprivate long workerIdBits = 5L;//5位的机房idprivate long datacenterIdBits = 5L;//每毫秒内产生的id数 2 的 12次方private long sequenceBits = 12L;// 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内private long maxWorkerId = -1L ^ (-1L << workerIdBits);// 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);private long workerIdShift = sequenceBits;private long datacenterIdShift = sequenceBits + workerIdBits;private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private long sequenceMask = -1L ^ (-1L << sequenceBits);//记录产生时间毫秒数,判断是否是同1毫秒private long lastTimestamp = -1L;public long getWorkerId(){return workerId;}public long getDatacenterId() {return datacenterId;}public long getTimestamp() {return System.currentTimeMillis();}public IdWorker(long workerId, long datacenterId, long sequence) {// 检查机房id和机器id是否超过31 不能小于0if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;this.sequence = sequence;}// 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的idpublic synchronized long nextId() {// 这儿就是获取当前时间戳,单位是毫秒long timestamp = timeGen();if (timestamp < lastTimestamp) {System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",lastTimestamp - timestamp));}// 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id// 这个时候就得把seqence序号给递增1,最多就是4096if (lastTimestamp == timestamp) {// 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,//这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围sequence = (sequence + 1) & sequenceMask;//当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生IDif (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0;}// 这儿记录一下最近一次生成id的时间戳,单位是毫秒lastTimestamp = timestamp;// 这儿就是最核心的二进制位运算操作,生成一个64bit的id// 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit// 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型return ((timestamp - twepoch) << timestampLeftShift) |(datacenterId << datacenterIdShift) |(workerId << workerIdShift) | sequence;}/*** 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID* @param lastTimestamp* @return*/private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}//获取当前时间戳private long timeGen(){return System.currentTimeMillis();}/***  main 测试类* @param args*/public static void main(String[] args) {System.out.println(1&4596);System.out.println(2&4596);System.out.println(6&4596);System.out.println(6&4596);System.out.println(6&4596);System.out.println(6&4596);
//		IdWorker worker = new IdWorker(1,1,1);
//		for (int i = 0; i < 22; i++) {
//			System.out.println(worker.nextId());
//		}}
}

SnowFlake算法的优点:

  • 高性能高可用:生成时不依赖于数据库,完全在内存中生成。
  • 容量大:每秒中能生成数百万的自增ID。
  • ID自增:存入数据库中,索引效率高。

SnowFlake算法的缺点:
        依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部