蒙德里安的梦想 状压 DP

定义

状压 DP 是动态规划的一种,通过将状态压缩为整数来达到优化转移的目的。

例题:蒙德里安的梦想

求把 N×M 的棋盘分割成若干个 1×2 的长方形,有多少种方案。

例如当 N=2,M=4 时,共有 5 种方案。当 N=2,M=3时,共有 3 种方案。

如下图所示:

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含两个整数 N 和 M。

当输入用例 N=0,M=0 时,表示输入终止,且该用例无需处理。

输出格式

每个测试用例输出一个结果,每个结果占一行。

数据范围

1≤N,M≤11

输入样例:

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

输出样例:

1
0
1
2
3
5
144
51205

 解决思路+代码:

#include 
#include 
#include using namespace std;const int N = 12, M = 1 << N;int n, m;
long long f[N][M];
bool st[M];/*f[i][j]   : 表示当前 前i列已经解决好了,并且第i+1列多出来的方格用j来表示的状态,有多少少方案数*/int main()
{while (cin >> n >> m, n || m){for (int i = 0; i < 1 << n; i ++ ){int cnt = 0;st[i] = true;for (int j = 0; j < n; j ++ )if (i >> j & 1){if (cnt & 1) st[i] = false;cnt = 0;}else cnt ++ ;if (cnt & 1) st[i] = false;}memset(f, 0, sizeof f);f[0][0] = 1;for (int i = 1; i <= m; i ++ )for (int j = 0; j < 1 << n; j ++ )for (int k = 0; k < 1 << n; k ++ )if ((j & k) == 0 && st[j | k])f[i][j] += f[i - 1][k];cout << f[m][0] << endl;}return 0;
}


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部