图形学基础之画心形和圣诞树
前言
基本描述
本文主要是为了了解图形基础, 非常仓促; 后期详细学习再补上
参考文章
用C++实现圣诞树http://www.codeceo.com/article/c-christmas-tree.html
用C++心形https://www.zhihu.com/question/27015321/answer/35028446
实现过程
Python实现心形
star3 的 d 生成出现了问题, 有兴趣的可以研究下给我留言
def star1():for y in [1.5-0.1*i for i in range(30)]:for x in [0.05*i-1.5 for i in range(60)]:a = x*x + y*y -1print '{}'.format('*' if a*a*a - x*x*y*y*y <= 0 else ' '),printdef star2():for y in [1.5-0.1*i for i in range(30)]:for x in [0.05*i-1.5 for i in range(60)]:a = x*x + y*y -1 #temp value as last examplef = a*a*a - x*x*y*y*y # compared with 0print '{}'.format('$:-+*#%@'[int(-8*f-1)] if f <= 0 else ' '),printdef star3():from math import sqrtdef f(x,y,z):a = x * x + 9.0/ 4.0* y * y + z * z - 1return a*a*a - x*x * z*z*z - 9.0/80.0 * y*y * z*z *zdef h(x,z):for y in [1 - 0.001*i for i in range(1001)]:if f(x,y,z <= 0):return yreturn 0for z in [1.5-0.1*i for i in range(30)]:for x in [0.025*i-1.5 for i in range(120)]:v = f(x, 0, z)if(v <= 0):y0 = h(x, z)ny = 0.01nx = h(x + ny, z) - y0nz = h(x, z + ny) - y0nd = 1.0/ sqrt(nx * nx + ny * ny + nz * nz)d = (nx + ny - nz) * nd * 0.5 + 0.5print '{}'.format('$:-+*#%@'[int(5*d)]),else:print ' ',printstar3()
C++实现心形->存到本地
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include
#include float f(float x, float y, float z)
{float a = x * x + 9.0f / 4.0f * y * y + z * z - 1;return a * a * a - x * x * z * z * z - 9.0f / 80.0f * y * y * z * z * z;
}float h(float x, float z)
{for (float y = 1.0f; y >= 0.0f; y -= 0.001f)if (f(x, y, z) <= 0.0f)return y;return 0.0f;
}int main()
{FILE* fp = fopen("heart.ppm", "w");int sw = 512, sh = 512;fprintf(fp, "P3\n%d %d\n255\n", sw, sh);for (int sy = 0; sy < sh; sy++){float z = 1.5f - sy * 3.0f / sh;for (int sx = 0; sx < sw; sx++){float x = sx * 3.0f / sw - 1.5f;float v = f(x, 1.0f, z); int r = 0;if (v <= 0.0f) {float y0 = h(x, z);float ny = 0.001f;float nx = h(x + ny, z) - y0;float nz = h(x, z + ny) - y0;float nd = 1.0f / sqrtf(nx * nx + ny * ny + nz * nz);float d = (nx + ny - nz) / sqrtf(3) * nd * 0.5f + 0.5f;r = (int)(d * 255.0f);}fprintf(fp, "%d 0 0 ", r);}fputc('\n', fp);}fclose(fp);
}
心形所用到技术: 分形和简单的数学图形基础,
C++实现圣诞树的最终源码
#include
#include
#include
#include #define PI 3.14159265359ffloat sx, sy;typedef float Mat[4][4];
typedef float Vec[4];void scale(Mat* m, float s) {Mat temp = { {s,0,0,0}, {0,s,0,0 }, { 0,0,s,0 }, { 0,0,0,1 } };memcpy(m, &temp, sizeof(Mat));
}void rotateY(Mat* m, float t) {float c = cosf(t), s = sinf(t);Mat temp = { {c,0,s,0}, {0,1,0,0}, {-s,0,c,0}, {0,0,0,1} };memcpy(m, &temp, sizeof(Mat));
}void rotateZ(Mat* m, float t) {float c = cosf(t), s = sinf(t);Mat temp = { {c,-s,0,0}, {s,c,0,0}, {0,0,1,0}, {0,0,0,1} };memcpy(m, &temp, sizeof(Mat));
}void translate(Mat* m, float x, float y, float z) {Mat temp = { {1,0,0,x}, {0,1,0,y}, {0,0,1,z}, {0,0,0,1} };memcpy(m, &temp, sizeof(Mat));
}void mul(Mat* m, Mat a, Mat b) {Mat temp;for (int j = 0; j < 4; j++)for (int i = 0; i < 4; i++) {temp[j][i] = 0.0f;for (int k = 0; k < 4; k++)temp[j][i] += a[j][k] * b[k][i];}memcpy(m, &temp, sizeof(Mat));
}void transformPosition(Vec* r, Mat m, Vec v) {Vec temp = { 0, 0, 0, 0 };for (int j = 0; j < 4; j++)for (int i = 0; i < 4; i++)temp[j] += m[j][i] * v[i];memcpy(r, &temp, sizeof(Vec));
}float transformLength(Mat m, float r) {return sqrtf(m[0][0] * m[0][0] + m[0][1] * m[0][1] + m[0][2] * m[0][2]) * r;
}float sphere(Vec c, float r) {float dx = c[0] - sx, dy = c[1] - sy;float a = dx * dx + dy * dy;return a < r * r ? sqrtf(r * r - a) + c[2] : -1.0f;
}float opUnion(float z1, float z2) {return z1 > z2 ? z1 : z2;
}float f(Mat m, int n) {float z = -1.0f;for (float r = 0.0f; r < 0.8f; r += 0.02f) {Vec v = { 0.0f, r, 0.0f, 1.0f };transformPosition(&v, m, v);z = opUnion(z, sphere(v, transformLength(m, 0.05f * (0.95f - r))));}if (n > 0) {Mat ry, rz, s, t, m2, m3;rotateZ(&rz, 1.8f);for (int p = 0; p < 6; p++) {rotateY(&ry, p * (2 * PI / 6));mul(&m2, ry, rz);float ss = 0.45f;for (float r = 0.2f; r < 0.8f; r += 0.1f) {scale(&s, ss);translate(&t, 0.0f, r, 0.0f);mul(&m3, s, m2);mul(&m3, t, m3);mul(&m3, m, m3);z = opUnion(z, f(m3, n - 1));ss *= 0.8f;}}}return z;
}float f0(float x, float y, int n) {sx = x;sy = y;Mat m;scale(&m, 1.0f);return f(m, n);
}int main(int argc, char* argv[]) {int n = argc > 1 ? atoi(argv[1]) : 3;float zoom = argc > 2 ? atof(argv[2]) : 1.0f;for (float y = 0.8f; y > -0.0f; y -= 0.02f / zoom, putchar('\n'))for (float x = -0.35f; x < 0.35f; x += 0.01f / zoom) {float z = f2(x, y, n);if (z > -1.0f) {float nz = 0.001f;float nx = f0(x + nz, y, n) - z;float ny = f0(x, y + nz, n) - z;float nd = sqrtf(nx * nx + ny * ny + nz * nz);float d = (nx - ny + nz) / sqrtf(3) / nd;d = d > 0.0f ? d : 0.0f;// d = d < 1.0f ? d : 1.0f;putchar(".-:=+*#%@@"[(int)(d * 9.0f)]);}elseputchar(' ');}
}
说明
只是今天偶尔看到了, 记录下来; 没有特别含义, 以后深入学习了图形学再来深入探讨, 感兴趣的话, 相关内容可以到对应的承接页进行浏览学习
后记
略
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
