Science封面研究大牛,加盟OpenAI!顶会论文奖拿到手软的那种。。。。。。

来源:量子位

OpenAI被爆最新人事动向:

前FAIR(Meta)研究科学家Noam Brown加盟!

这位大佬来头可不小,研究曾登上《Science》封面。

02052e9bd9c7480e74c11f61f8a28df8.png

不仅如此,他此前的研究成果可谓相当炸裂,可以用一句话来总结:

NeurIPS、AAAI等众多顶会论文奖拿到手软!

就是这样一位传奇人物,加入OpenAI后他对自己要做的事放出狠话:

如果成功,我们或许会看到比GPT-4好1000倍的大语言模型。

d6addf73a221920aea8eccf93e286768.png

所以,他之前拿下过什么成就,下一步又究竟要做什么?

德扑AI之父!拿奖拿到手软

Noam Brown与AI结缘,要从他的一篇博士论文说起。

三年前,Noam Brown从卡内基梅隆大学(CMU)以230页超硬核论文完成答辩,拿下计算机科学博士学位。

4d952d1e4b80fbd238f87eb88ec40bc9.png

这篇论文,写的正是Noam Brown与其CMU导师Tuomas Sandholm一起创建的AI系统——称霸德州扑克赛场的赌神Libratus(冷扑大师)和Pluribus。

与围棋、国际象棋、跳棋等棋类游戏不同,这些游戏属于完美信息博弈,对战的双方,清楚每一时刻局面上的全部情况。

而相比之下,德州扑克存在大量的隐藏信息,包括:对手持有什么牌,对手是否在诈唬?

这也就决定了德扑的一个主要特征——不完美博弈

为此,Noam Brown创建的Libratus将三个负责开发扑克策略、实时优化策略、比赛结束后审查牌局的AI系统结合了起来。

2017年年初,在宾夕法尼亚州匹兹堡的Rivers赌场上,4名顶尖人类职业玩家和Libratus在为期 20 天的赛程里面对战12万手,Libratus一路以碾压的态势豪取胜利,赢得176万美元(虚拟货币)。

和AlphaGo不同,在人机大战之前Libratus没有研究过人类如何打德州扑克,也没有和人类职业玩家有过交手。

但Libratus对战四位人类高手还是拿下了大比分优势:14.7个大盲注/百手(14.7bb/h)。

“一般领先5-10bb/h就肯定是赢了”,Noam Brown表示。

德扑AI不仅取得了这场比赛的胜利,Pluribus还在那年登顶了《Science》封面。

与此相关的研究,目前也已有近700的引用量。

93c7695963d3ffbda103872ce944cfa5.png

当然,Libratus不是凭空而生,2015年4月它的前身Claudico正是在同一个赌场里,和四位人类顶级玩家交锋8万手后,累积输掉73.2万美元(当然也是虚拟货币),败给了人类。

Noam Brown多年来在多步骤推理、自我对战和多智能体AI方面的研究,终于以Libratus的成功交上了一份满意的答卷,并在此之后,包揽众多大奖。

比赛胜利同年,他获得了NeurIPS 2017最佳论文奖。2019年又继续与导师合作,成功拿下AAAI 2019Honorable Mention奖

之后Noam Brown的一系列成果获得了《Science》2019年年度突破的亚军、马文·明斯基奖,还被评为《MIT科技评论》35岁以下35位创新者之一。

此前获得过这个称号的,就包括谷歌创始人Larry Page、Sergey Brin,Facebook创始人Mark Zuckerberg,Paypal及Slide创始人Max Levchin,还有著名人工智能科学家吴恩达等一众大佬。

但是不管Libratus距离扑克之神还有多远,Brown坦言他不会再对这个德扑AI进行优化了。

博士毕业后,Noam Brown加入了FAIR(Meta),成为其研究科学家。

在Meta,他曾参与共同开发出第一个在战略游戏Diplomacy中达到人类水平的AI——CICERO。

64e5c5bed43109ada8bce19062206057.png

一切看起来顺风顺水,Noam Brown为什么突然要转战OpenAI,又究竟要做什么?

加入OpenAI后:用游戏中的方法提升大模型

Noam Brown给出了他的答案:

多年来,一直在研究扑克和Diplomacy等游戏中的AI自我对战和推理。现在,我将研究如何将这些方法真正通用化。

5f0b252e00a6ba416054a01717087fc0.png

所以,下一个大模型难道将借鉴游戏中的方法?

其实,Noam Brown的灵感来自于当年Libratus成功击败了顶级人类选手时,他所观察到的一种现象。

而这种现象与2016年AlphaGo击败李世石极为相似。

回想AlphaGo击败李世石,其中的关键在于:

AI在每一步棋之前都能够进行约1分钟的“思考”

而就这一点对于AlphaGoZero来说,相当于将预训练的规模扩大了约10万倍(搜索后评分约为5200 Elo,不经搜索评分约为3000 Elo)。

5c007d849fd037d7489316c451c3dd36.png

Noam Brown在扑克中观察到了类似的现象,将其运用于Libratus,才有了后面的成功击败顶级人类选手。

除此之外,AnthropicAI的技术工程师Andy L. Jones,在Hex棋盘游戏中详细研究了训练时间和测试时间的计算权衡,也发现了类似的模式。

1c0845986b3f9e1d77186aeb8d28cbd3.png

这项研究展示了如何在MCTS(Monte Carlo Tree Search,蒙特卡洛树搜索)的训练计算和推理计算之间进行权衡,而增加10倍的MCTS步骤几乎等同于增加10倍的训练:

4e9c5db60616cfef67f7f704525d4cd8.png

Noam Brown认为:

现在所有这些方法都是针对特定的游戏而设计的。如果我们能够发现一个通用版本,那么增益将是巨大的。

虽然推理可能会慢1000倍,并且成本更高,但是与为了一种新的抗癌药物或者为了证明黎曼猜想一样,我们会为推理付出怎样的代价呢?

d1be5dd5bf62711274680f58e14acffb.png

接着他又补充道:

提升能力总是存在风险的,但如果这项研究取得成功,它在安全研究方面也将具有重要价值。想象一下,如果我们能够花费100万美元的推理成本来预测一个更具能力的未来模型,这将给我们一个此前所没有的警示。

26b8c72174a5ac39c0632d2db1b09444.png

对于Noam Brown加入OpenAI这事儿,评论区赶来的大多是来道喜的。

比如说PyTorch联合创始人Soumith Chintala:

05adec0da1454db5e24987dd30f18eed.png

前同事Meta AI研究总监、佐治亚理工学院计算机科学家Dhruv Batra也发来了“贺电”:

ea2f62da75e528fc89fd591c5a7e675a.png

参考链接:
[1]https://twitter.com/polynoamial/status/1676971503261454340
[2]https://noambrown.github.io/
[3]https://www.science.org/toc/science/365/6456

推荐阅读

  • 西电IEEE Fellow团队出品!最新《Transformer视觉表征学习全面综述》

  • 润了!大龄码农从北京到荷兰的躺平生活(文末有福利哟!)

  • 如何做好科研?这份《科研阅读、写作与报告》PPT,手把手教你做科研

  • 奖金675万!3位科学家,斩获“中国诺贝尔奖”!

  • 又一名视觉大牛从大厂离开!阿里达摩院 XR 实验室负责人谭平离职

  • 最新 2022「深度学习视觉注意力 」研究概述,包括50种注意力机制和方法!

  • 【重磅】斯坦福李飞飞《注意力与Transformer》总结,84页ppt开放下载!

  • 2021李宏毅老师最新40节机器学习课程!附课件+视频资料

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

785ba9156dcb3fda8cb3ee2d73968cf6.jpeg

👆 长按识别,邀请您进群!

27b47f97ac736b8129fc39166002166f.gif


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部