K线形态识别_低位并排阳线
写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文;
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。
目录
解说
技术特征
技术含义
K线形态策略代码
结果
解说
低位并排阳线是指在下跌趋势中,由两根跳空低开且第一根阳线与前面K线留有跳空缺口的K线组合。因两根阳线并肩而立,所以称低位并排阳线。

技术特征
1)出现在下跌趋势中。
2)由两根阳线组成。
3)第一根阳线跳空低开,收盘时在前一根K线下方留下一个跳空缺口,第二根阳线继续跳空低开,与第一根阳线并肩而立。
技术含义
低位并排阳线是见底信号。在下跌趋势中,先是收出一根阴线,然后是连续两根跳低开盘但都高收的阳线,这说明空方虽然连续两次在开盘时将多方打压下去,但却无力对其继续施压。空方显然已力不从心,按不住多方倔强昂起的头。股价或指数也许正和多方此刻的心理一样,蠢蠢欲动。
K线形态策略代码
def excute_strategy(daily_file_path):'''名称:低位并排阳线识别:1. 由两根跳空低开且第一根阳线与前面K线留有跳空缺口的K线组合2. 第二根阳线继续跳空低开,与第一根阳线并肩而立自定义:1. 并肩而立 =》两者之间的参差不超过1.5%前置条件:计算时间区间 2021-01-01 到 2022-01-01:param daily_file_path: 股票日数据文件路径:return:'''import pandas as pdimport osstart_date_str = '2021-01-01'end_date_str = '2022-01-01'df = pd.read_csv(daily_file_path,encoding='utf-8')# 删除停牌的数据df = df.loc[df['openPrice'] > 0].copy()df['o_date'] = df['tradeDate']df['o_date'] = pd.to_datetime(df['o_date'])df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()# 保存未复权收盘价数据df['close'] = df['closePrice']# 计算前复权数据df['openPrice'] = df['openPrice'] * df['accumAdjFactor']df['closePrice'] = df['closePrice'] * df['accumAdjFactor']df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']# 开始计算df['type'] = 0df.loc[df['closePrice'] >= df['openPrice'], 'type'] = 1df.loc[df['closePrice'] < df['openPrice'], 'type'] = -1df['body_length'] = abs(df['closePrice']-df['openPrice'])# 跳空低开df['breakaway_gap_0'] = 0df.loc[(df['type']==1) & (df['type'].shift(-1)==1),'breakaway_gap_0'] = df['openPrice'] - df['closePrice'].shift(-1)df.loc[(df['type']==-1) & (df['type'].shift(-1)==1),'breakaway_gap_0'] = df['closePrice'] - df['closePrice'].shift(-1)df['breakaway_gap_1'] = 0df.loc[(df['type']==1) & (df['type'].shift(-2)==1),'breakaway_gap_1'] = df['openPrice'] - df['closePrice'].shift(-2)df.loc[(df['type']==-1) & (df['type'].shift(-2)==1),'breakaway_gap_1'] = df['closePrice'] - df['closePrice'].shift(-2)df['signal'] = 0df['signal_name'] = ''df.loc[(df['breakaway_gap_0']>0) & (df['breakaway_gap_1']>0) & (abs(df['closePrice'].shift(-1)-df['closePrice'].shift(-2))/df['closePrice'].shift(-1)<=0.015),'signal'] = 1file_name = os.path.basename(daily_file_path)title_str = file_name.split('.')[0]line_data = {'title_str':title_str,'whole_header':['日期','收','开','高','低'],'whole_df':df,'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],'start_date_str':start_date_str,'end_date_str':end_date_str,'signal_type':'duration','duration_len':[-1],'temp':len(df.loc[df['signal']==1])}return line_data
结果

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
