Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) G

题面:

有一个初始为空的序列,在序列末尾随机添加1或2,有p的概率添加1,1 - p的概率添加2,如果序列末尾有连着的两个相同的数k,那么他们会合并成k + 1,这个合并只要可行,可以一直持续下去

序列有个长度限制n,当序列凑到n位且无法合并,添加操作就结束,问结束时所有权值的和的期望。


solution:

假设数字i出现的概率为p(i),则数字i + 1出现的期望可以粗略地估计为p(i)^2,那么,值大于50的数出现的概率就非常小了,对答案的贡献可以忽略不计

定义a[i][j]:在长度限制为i的情况下,最左端出现过数字j,最后让序列长度停止在i的概率

那么有a[i][j] = a[i][j - 1] * a[i - 1][j - 1],即先出现一次j - 1,再出现j - 1的概率

类似地,定义b[i][j],但加一个约束,序列初始时的第一个数字必须是2,有b[i][j] = b[i][j - 1] * a[i - 1][j - 1]

边界为a[i][1] = p,a[i][2] = b[i][2] = 1 - p

定义f[i][j]:构造一个长度为i的序列,构造结束时序列最左端为j,序列的和的期望

一般地,有f[i][j] = j + ∑(f[i - 1][k] * a[i - 1][k] * (1 - a[i - 2][k])) / ∑(a[i - 1][k] * (1 - a[i - 2][k])) (k = 1 ~ j - 1)

因为第一位确定为j时,第二位出现过的数字一定不能大于等于j,否则会和这个j合并

对于第三位,因为第二位的值已经确定,所以只需保证第三位不为k即可,乘上概率转移一下

特别地,当j = 1,

f[i][1] = 1 + ∑(f[i - 1][k] * b[i - 1][k] * (1 - a[i - 2][k])) / ∑(b[i - 1][k] * (1 - a[i - 2][k])) (k = 2 ~ 50)

最后统计答案为Ans = ∑f[n][i] * a[n][i] * (1 - a[n][i])

注意到转移超过五十次时,a,b数组的值就不在更新了

所以暴力前50次转移,后面的转移就可以用矩阵乘法了

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;const int N = 51;
typedef long double DB;
const DB One = 1.000;struct data{DB a[N][N]; data(){memset(a,0,sizeof(a));}data operator * (const data &b){data c;for (int k = 0; k < N; k++)for (int i = 0; i < N; i++)for (int j = 0; j < N; j++)c.a[i][j] += a[i][k] * b.a[k][j];return c;}
};int n;
DB Ans,p,q,a[N][N],b[N][N],f[N][N];void Calc_50()
{for (int i = 2; i < N; i++){for (int j = 1; j < N; j++){if (j == 1) a[i][j] += p;if (j == 2) a[i][j] += q,b[i][j] += q;a[i][j] += a[i][j - 1] * a[i - 1][j - 1];b[i][j] += b[i][j - 1] * a[i - 1][j - 1];}DB s1,s2; s1 = s2 = 0;for (int k = 2; k <= 50; k++){s2 += b[i - 1][k] * (One - a[i - 2][k]);s1 += f[i - 1][k] * b[i - 1][k] * (One - a[i - 2][k]);}f[i][1] = One + s1 / s2;for (int j = 2; j <= 50; j++){s1 = s2 = 0;for (int k = 1; k < j; k++){s2 += a[i - 1][k] * (One - a[i - 2][k]);s1 += f[i - 1][k] * a[i - 1][k] * (One - a[i - 2][k]);}f[i][j] = j + s1 / s2;}}	
}data ksm(data x)
{data ret;for (int i = 0; i < N; i++) ret.a[i][i] = 1;for (; n; n >>= 1){if (n & 1) ret = ret * x;x = x * x;}return ret;
}void Calc()
{data k; DB sum = 0;f[50][0] = k.a[0][0] = 1;for (int i = 2; i <= 50; i++)sum += b[50][i] * (One - a[50][i]);k.a[0][1] = 1;for (int i = 2; i <= 50; i++)k.a[i][1] = b[50][i] * (One - a[50][i]) / sum;for (int i = 2; i <= 50; i++){sum = 0; k.a[0][i] = (DB)(i);for (int j = 1; j < i; j++) sum += a[50][j] * (One - a[50][j]);for (int j = 1; j < i; j++) k.a[j][i] = a[50][j] * (One - a[50][j]) / sum;}k = ksm(k);for (int i = 1; i <= 50; i++)for (int j = 0; j <= 50; j++)Ans += f[50][j] * k.a[j][i] * a[50][i] * (One - a[50][i]);printf("%.12lf\n",(double)(Ans));
}int main()
{#ifdef DMCfreopen("DMC.txt","r",stdin);#endifcin >> n >> p; p /= 1E9; q = One - p;a[1][1] = p; a[1][2] = b[1][2] = q;f[1][1] = 1; f[1][2] = 2; Calc_50();if (n <= 50){for (int i = 1; i <= 50; i++)Ans += f[n][i] * a[n][i] * (One - a[n - 1][i]);printf("%.12lf\n",(double)(Ans)); return 0;}n -= 50; Calc();return 0;
}


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部