【51Nod1835】完全图
【题目链接】
- 点击打开链接
【思路要点】
定义 fi f i 表示 i i 个点的连通图的个数。
考虑用所有图减去不连通的图的个数,枚举
1 " role="presentation">号节点所在联通块大小,有fi=gi−∑i−1j=1(ij)∗fj∗gi−j, gi=2(i2) f i = g i − ∑ j = 1 i − 1 ( i j ) ∗ f j ∗ g i − j , g i = 2 ( i 2 )
记 dpi,j d p i , j 表示共有 i i 个点,恰好
j " role="presentation">个联通块的图的个数,枚举 1 1 号节点所在联通块大小,有
d p i , j = ∑ k = 1 i ( i k ) ∗ f k ∗ d " role="presentation"> p i − k , j − 1 时间复杂度 O(N3) O ( N 3 ) ,需要卡常。
【代码】
#include using namespace std;
const int MAXN = 505;
const int P = 998244353;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); }
template <typename T> void read(T &x) {x = 0; int f = 1;char c = getchar();for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';x *= f;
}
template <typename T> void write(T x) {if (x < 0) x = -x, putchar('-');if (x > 9) write(x / 10);putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {write(x);puts("");
}
int n, m, fac[MAXN], inv[MAXN];
int f[MAXN], g[MAXN], dp[MAXN][MAXN];
int power(int x, int y) {if (y == 0) return 1;int tmp = power(x, y / 2);if (y % 2 == 0) return 1ll * tmp * tmp % P;else return 1ll * tmp * tmp % P * x % P;
}
int getc(int x, int y) {return 1ll * fac[x] * inv[y] % P * inv[x - y] % P;
}
int main() {read(n), read(m);fac[0] = 1;for (int i = 1; i <= n; i++)fac[i] = 1ll * fac[i - 1] * i % P;inv[n] = power(fac[n], P - 2);for (int i = n - 1; i >= 0; i--)inv[i] = inv[i + 1] * (i + 1ll) % P;dp[0][0] = 1;for (int i = 1; i <= n; i++)g[i] = power(2, i * (i - 1) / 2);for (int i = 1; i <= n; i++) {f[i] = g[i];for (int j = 1; j < i; j++)f[i] = (f[i] - 1ll * f[j] * g[i - j] % P * getc(i - 1, j - 1) % P + P) % P;}for (int i = 1; i <= n; i++)for (int j = 1; j <= i && j <= m; j++) {int tmp = 0;for (int k = 1; k <= i && i - k >= j - 1; k++)tmp = (tmp + 1ll * f[k] * dp[i - k][j - 1] % P * getc(i - 1, k - 1) % P) % P;dp[i][j] = tmp;}int ans = dp[n][m];if (m == 1) ans = (ans - 1 + P) % P;writeln(ans);return 0;
}
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
