Orange——开源机器学习交互式数据分析工具

Orange为新手和专家提供开源机器学习和数据可视化。使用大型工具箱交互式数据分析工作流程。

交互式数据可视化


Orange的全部内容都是关于数据可视化,帮助发现隐藏的数据模式,提供数据分析过程背后的直觉或支持数据科学家与领域专家之间的交流。可视化窗口小部件包括散点图,箱形图和直方图,以及特定于模型的可视化,例如树状图,轮廓图和树可视化,仅举几例。许多其他可视化功能可用于附加组件,包括网络,词云,地理地图等的可视化。

我们注意使橙色可视化交互:您可以从散点图,树中的节点,树状图中的分支中选择数据点。任何这样的交互都会指示可视化来发出与所选部分可视化对应的数据子集。考虑下面的散点图和分类树的组合。散点图显示所有数据,但突出显示与分类树中选定节点对应的数据子集。

在树中选择的数据在散点图中突出显示

丰富的可视化

橙色包括许多标准的可视化。散点图非常适合可视化一对属性之间的相关性,用于显示基本统计数据的框图,用于提供整个数据集概述的热图,以及用于绘制多维数据的MDS等投影图。

Orange中的一些基本可视化

除了数据挖掘套件中的可视化之外,Orange还包含一些其他软件包中可能没有的额外功能。其中包括用于分析聚类结果的轮廓图的小部件,用于发现特征交互的马赛克和Sieve图以及用于分类树和森林的毕达哥拉斯树可视化。


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部