A3C 算法的简单实现(ChatGPT)

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import threading
import multiprocessing
import os# 定义Actor-Critic模型
class ActorCriticModel(tf.keras.Model):def __init__(self, state_size, action_size):super(ActorCriticModel, self).__init__()self.state_size = state_sizeself.action_size = action_sizeself.dense1 = Dense(128, activation='relu')  # 第一个隐藏层self.policy_logits = Dense(action_size)     # 输出动作概率的层self.dense2 = Dense(128, activation='relu')  # 第二个隐藏层self.values = Dense(1)                      # 输出状态值的层def call(self, inputs):x = self.dense1(inputs)logits = self.policy_logits(x)  # 计算动作概率v = self.dense2(inputs)values = self.values(v)         # 计算状态值return logits, values# 训练函数
def train(global_model, optimizer, global_step):env = gym.make('CartPole-v1')  # 创建CartPole环境,替换为实际环境名称max_episodes = 10000  # 最大训练次数gamma = 0.99          # 折扣因子update_freq = 5       # 更新频率num_workers = multiprocessing.cpu_count()  # 并发智能体数for episode in range(max_episodes):state = env.reset()state = np.reshape(state, [1, state_size])with tf.GradientTape() as tape:total_reward = 0num_steps = 0done = Falsewhile not done:num_steps += 1logits, values = global_model(state)probs = tf.nn.softmax(logits)  # 使用softmax计算动作概率action = np.random.choice(action_size, p=probs.numpy()[0])  # 根据概率随机选择动作next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])total_reward += rewardif done or num_steps >= 300:  # 限制最大步数total_reward = -100 if not done else total_rewardR = 0else:_, R = global_model(next_state)  # 获取下一状态的值td_target = reward + gamma * Rtd_error = td_target - valuesactor_loss = -tf.math.log(probs[0, action]) * td_error  # Actor的损失critic_loss = tf.square(td_error)                     # Critic的损失total_loss = actor_loss + critic_loss  # 综合Actor和Critic的损失grads = tape.gradient(total_loss, global_model.trainable_variables)  # 计算梯度optimizer.apply_gradients(zip(grads, global_model.trainable_variables))  # 更新参数if global_step % update_freq == 0:global_model.set_weights(model.get_weights())  # 更新全局模型参数global_step += 1state = next_stateprint(f"Episode {episode+1}: Total Reward = {total_reward}")if __name__ == "__main__":state_size = 4  # 状态空间维度,替换为实际状态空间维度action_size = 2  # 动作空间维度,替换为实际动作空间维度global_model = ActorCriticModel(state_size, action_size)  # 创建全局模型optimizer = Adam(learning_rate=0.001)  # Adam优化器,替换为实际学习率global_step = 0workers = []for _ in range(num_workers):worker = threading.Thread(target=train, args=(global_model, optimizer, global_step))workers.append(worker)for worker in workers:worker.start()for worker in workers:worker.join()


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部