python pca双标图的含义_python – 添加图例到散点图(PCA)
有一个简单的方法吗?
例如,虹膜数据带有来自上面链接的双标图代码.
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
import pandas as pd
from sklearn.preprocessing import StandardScaler
iris = datasets.load_iris()
X = iris.data
y = iris.target
#In general a good idea is to scale the data
scaler = StandardScaler()
scaler.fit(X)
X=scaler.transform(X)
pca = PCA()
x_new = pca.fit_transform(X)
def myplot(score,coeff,labels=None):
xs = score[:,0]
ys = score[:,1]
n = coeff.shape[0]
scalex = 1.0/(xs.max() - xs.min())
scaley = 1.0/(ys.max() - ys.min())
plt.scatter(xs * scalex,ys * scaley, c = y)
for i in range(n):
plt.arrow(0, 0, coeff[i,0], coeff[i,1],color = 'r',alpha = 0.5)
if labels is None:
plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color = 'g', ha = 'center', va = 'center')
else:
plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'center')
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.xlabel("PC{}".format(1))
plt.ylabel("PC{}".format(2))
plt.grid()
#Call the function. Use only the 2 PCs.
myplot(x_new[:,0:2],np.transpose(pca.components_[0:2, :]))
plt.show()
欢迎任何关于PCA biplots的建议!
还有其他代码,如果以另一种方式添加图例更容易!
解决方法:
我最近提出了一种向散点图添加图例的简单方法,请参阅GitHub PR.这仍在讨论中.
在此期间,您需要从y中的唯一标签手动创建图例.对于它们中的每一个,您将使用与散点图中使用的标记相同的标记创建Line2D对象,并将它们作为参数提供给plt.legend.
scatter = plt.scatter(xs * scalex,ys * scaley, c = y)
labels = np.unique(y)
handles = [plt.Line2D([],[],marker="o", ls="",
color=scatter.cmap(scatter.norm(yi))) for yi in labels]
plt.legend(handles, labels)
标签:pca,python,matplotlib,legend,biplot
来源: https://codeday.me/bug/20190916/1806766.html
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
