打破大语言模型巨头公司霸权:0门槛克隆ChatGPT,30分钟训完,60亿参数性能堪比GPT-3.5!...

省时查报告-专业、及时、全面的行研报告库

省时查方案-专业、及时、全面的营销策划方案库

【免费下载】2023年2月份热门报告合集

最新亲测国内可用ChatGPT使用教程(3分钟搞定)

文心一言、GPT3.5及GPT4应用测评对比报告

ChatGPT团队背景研究报告

ChatGPT的发展历程、原理、技术架构及未来方向

ChatGPT使用总结:150个ChatGPT提示此模板

ChatGPT数据集之谜

《ChatGPT:真格基金分享.pdf》

2023年AIGC发展趋势报告:人工智能的下一时代

9034fdd410932fe620507aab98dc18dd.jpeg

【新导读】破解「CloseAI」,ChatGPT克隆羊问世!0门槛实现「自研」,从此大语言模型不再只是少数大公司的「金手指」。

此前,OpenAI不Open的事件,已经引发了坊间的诸多争议。

光放出基准和测试结果,不提供训练数据、成本、方法,是真的要「赢家通吃」了。

213b66260b70b5dfe55429c192d8b2ae.png

眼看大语言模型似乎要被巨头公司垄断,如今忽然杀出一个初创公司,给了OpenAI一枪——用60亿参数的「Dolly」实现了和ChatGPT相似的能力。

没错,我们现在只需要准备一些高质量的训练数据,再随便拿一个开源的大语言模型,训练30分钟后,就能得到一个ChatGPT「平替」!

对此,Databricks自豪地表示,Dolly的发布,就是自己在人工智能技术民主化道路上打响的第一弹。

e7f905930e82783f94458ba2ba55c272.png

60亿参数堪比ChatGPT,30分钟就训好

由于ChatGPT需要消耗大量的数据和算力资源(利用数万个单词训练,消耗大量GPU),所以这类大语言模型注定只能被少量巨头所掌握。

和「CloseAI」相反,Meta在今年3月向学术界发布了一组高质量(但不是指令跟随的)语言模型LLaMA,每个模型的训练时间超过了80,000个GPU小时。

随后,斯坦福大学基于LLaMA构建了Alpaca,但不同之处在于,它利用一个包含50,000个问题和答案的小数据集进行了微调。令人惊讶的是,这使得Alpaca具有了类似于ChatGPT的交互性。

而Dolly正是受到了Alpaca的启发。

更有趣的是,拥有60亿参数的Dolly并没有利用现在最新的模型,而是选择了一个2021年发布的开源模型——GPT-J。

由于Dolly本身是一个模型的「克隆」,所以团队最终决定将其命名为「多莉」——有史以来第一个被克隆的动物。

a58c1e89bbebfc38fb37fd07cfd0baae.png

与当前的大型语言模型(如GPT-3)相比,Dolly允许用户使用更小、更专业的模型,「复刻」ChatGPT的能力。

毕竟对于那些细分用户来说,能够利用针对本行业进行过精调的模型,可以大大增加性能和准确性。

尽管Databricks与OpenAI并无直接竞争关系,但它似乎试图通过证明构建类似ChatGPT这样的服务并非看起来那么困难,来抢占OpenAI的风头。

尤其是,OpenAI采取了「规模越大越好」的方法来开发语言模型,并对其工作越来越保密。

而Databricks除了将Dolly作为开源软件发布外,还强调Dolly只有60亿个参数(在训练过程中微调的语言模型部分),OpenAI的GPT-3模型有1750亿个参数。(OpenAI并未透露GPT-4的参数数量)。

ac058ec6f4e99c7b8fb191af8994b6ed.png

让老模型,涅槃重生

根据InstructGPT论文中描述的指令跟随能力对Dolly进行评估后发现,它在很多能力上的表现和ChatGPT十分类似,包括文本生成、头脑风暴和开放式问答。

在这些例子中,值得注意的不是生成文本的质量,而是在一个小型的高质量数据集上,微调一个旧的开源模型所带来的指令跟随能力的巨大改进。

内容生成

比如,写一条Databricks官宣大规模语言模型Dolly发布的推特。

可以看到,原始的60亿参数模型(GPT-J)所生成的内容驴唇不对马嘴,而Dolly则给出了一个完全可用的推文——

不仅内容符合要求,而且还贴心地加上了标签,以及提醒你记得加入发布的链接。

5cc513c3f2d2ede421089ede7c65dad0.png

对于这一题,ChatGPT给出的答案也是符合期待的,相比于Dolly,ChatGPT给出的推文包含更多评述性词句,并且给出的标签更加精准具体,但整体差距不大。

92a5aa00e38e529961f2b3fac2a3d1ee.png

当要写一条出售Nikon D-750相机的广告时,可以看到,GPT-J所生成的内容基本就在胡编乱造,像是在写小说一样杜撰购买和出售相机的剧情……

而Dolly则根据Nikon D-750相机的特点及优势,给出了一则吸引人的相机转卖广告语,但遗憾的是像素参数不对。

ff883a3c1f78b6f46ea189eaf25ebc98.png

ChatGPT在这一题上也是圆满完成任务,广告语中突出该款相机的优势,文末仍然贴心地加上了标签。

5b2ccd6321921e094d2868ad2d6d76ee.png

最后一题:给Edgar Allan Poe(爱伦·坡)写一封情书。

对此,古早的GPT-J直接拒绝回答,究其原因竟然是——爱伦·坡已经去世了,你不能给私人写情书。

而Dolly则成功地完成了任务,效果对比起来堪称「涅槃」。

b932976fc274c0f5463ad7fa3ace96e3.png

而这种「创造性」问题,显然是ChatGPT的强项,洋洋洒洒地写了300多个字。

30ee0b3d9fb53b7c4d0e6a8d07689aee.png

开放问答

在事实性问题的问答测试上,团队选择了下面这个:「向我解释一下核裂变和核聚变之间的区别。」

先不管对错,GPT-J全篇都是在讲太阳如何如何,虽然提到了「聚变」这个词,但完全无视了「裂变」。

而Dolly第一句就直接点题——核裂变和核聚变的区别在于释放能量的方式,随后简单解释了他们的不同。

c8889eec6cf99ed1f4800ba83de7a970.png

相比之下,ChatGPT给出的回答明显要更加翔实。

7bb2a65d9f73cf0ea6d3f4b9c8a98b92.png

头脑风暴

当让它们头脑风暴,给出应该阅读的五本科幻小说的名单,GPT-J则只是在喃喃自语,像是沉浸在了拖延阅读而产生的愧疚情绪中,完全回避了这个提问。

Dolly则一如既往的表现稳定,按照指令给出了5本科幻小说的书名及其作者。

9070e23536e76873db68bb61b91549f8.png

ChatGPT对于该问题给出了更加丰富的回答,不仅包括书名和作者,还对每一本书的内容、类型作了简要评述和介绍。

c6d01d2251063f89e6bfa70eb957d884.png

你要Close,我就Open

对于很多公司而言,宁愿自己建立一个不那么强的模型,也不愿将数据发送给那些只提供API的大语言模型供应商。

其中一个重要原因便是,这些问题和数据集是公司最敏感和专有的知识产权,直接将其交给第三方显然是不靠谱的。

此外,公司自身可能在模型质量、成本和期望行为方面有不同的权衡,一种可定制化的语言模型更加符合需求。

现在,Dolly的发布给了他们希望——即便是一个「过时」的开源大型语言模型 (LLM),也能通过30分的训练,赋予它神奇的类似ChatGPT的指令跟随能力。

不难想象,大语言模型或许很快就不是AI巨头公司独占的玩法了!

正如公司CEO Ali Ghodsi所说,「我们的信念是,让全世界的每个组织都能利用这些技术。」

更多干货请点击:

 
 
【免费下载】2023年2月份热门报告盘点最新亲测国内可用ChatGPT使用教程(3分钟搞定)罗振宇2023年跨年演讲PPT原稿吴晓波2022年年终秀演讲PPT原稿

《底层逻辑》高清配图

清华大学256页PPT元宇宙研究报告.pdf(附下载链接)

2022抖音种草ATOM方法论.pdf
经纬张颖:给科研技术背景创始人的10条建议ChatGPT调研报告ChatGPT团队背景研究报告ChatGPT的发展历程、原理、技术架构及未来方向2022-2023年B站平台营销报告小红书爆文笔记进阶指南2023年AIGC发展趋势报告:人工智能的下一时代


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部