基于差分进化算法的微电网调度研究(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客    

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

枯竭 污染 何提 用率 污染 问题 为解 微电 问题 微电 型的 分布 式能 合可 生能 源的 使 生能 系统 接入 便 用率 污染 实现 分布 式 发电 。目 内外 微电 研究 颖等[ 出采 方法 微电 调度 小为 过实 仿 证所提方法 新文 群算 优化 上提高 用率 的主 分布 层优化 调度 方法 损最小为 小为 立数 模型, 李海 考虑 微电 约束 条件 的粒子 对目 过实 群算

差分进化算法( differential evolution algorithm,DE)1]是1997年由 Rainer Storn和 KennethPrice 提出的。该算法相对于遗传算法而言,参数少﹐计算相对简便﹐被广泛应用于电力优化调度问题,其主要过程包括初始化、变异、交叉、选择和终止5个步骤。

📚2 运行结果

 

 

 

 

 部分代码:

%% 费用计算
% 计算燃料电池、微型燃气轮机、小型内燃机燃料成本
F_FuelCost= sum(x(1:24))*data.parameter(3,4)*data.c+sum(x(25:48))*data.parameter(4,4)*data.c+sum(x(49:72))*data.parameter(5,4)*data.c;

% 计算设备运行成本
F_YunweiCost=data.parameter(1,3)*sum(data.PV)+data.parameter(2,3)*sum(data.WT)+data.parameter(3,3)*sum(x(1:24))+data.parameter(4,3)*sum(abs(x(25:48)))+data.parameter(5,3)*sum(x(49:72))+data.parameter(6,3)*sum(abs(x_BT));  


% 计算污染物成本
F_PollutionCost=sum(data.pollution(:,1).*data.pollution(:,2).*sum(x(1:24)))+sum(data.pollution(:,1).*data.pollution(:,4).*sum(x(25:48)))+sum(data.pollution(:,1).*data.pollution(:,3).*sum(x(49:72)))+sum(data.pollution(:,1).*data.pollution(:,5).*sum(x(73:96)));

% 大电网交互成本
Grid=x(73:end);
tempa=find(Grid>0);
tempb=find(Grid<0);

F_GridChange= sum(Grid(tempa).*data.Price(tempa))+sum(Grid(tempb).*data.Price(tempb));

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陈丹凤,赵才,张志飞,周燕.基于改进差分进化算法的微电网调度研究[J].广西大学学报(自然科学版),2022,47(04):1018-1029.DOI:10.13624/j.cnki.issn.1001-7445.2022.1018.

[2]黄淑媛,肖健梅.基于差分进化算法的微电网多目标优化调度[J].船电技术,2018,38(07):57-61.DOI:10.13632/j.meee.2018.07.014.

🌈4 Matlab代码实现


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部