内存管理初始化源码2:setup_arch

  PFN相关宏说明:

/* kernel/include/linux/pfn.h */

PFN : Page Frame Number(物理页帧)
/*
* PFN_ALIGN:返回地址x所在那一页帧的下一页帧的起始地址。
* 例如:PFN_ALIGN(0x00000800) = 0x00001000 ; PFN_ALIGN(0x00001800) = 0x00002000;
* 理解:假如我们认为一页大小是0x0f,那么当前地址是0x08,如何通过0x08获得0x10呢? 0x08 + (0x10 - 1) = 0x17, 然后再把低位抹掉,不就刚好是10.
* 问题:这样做有一个问题,如果x=0x0,那么返回的是0x0,而不是0x10,这是为什么呢?
*/
#define PFN_ALIGN(x) (((unsigned long)(x) + (PAGE_SIZE - 1)) & PAGE_MASK)

/*
* PFN_UP:获取地址x所在物理页帧的的后一个PFN值,即x如果属于page 0, 则返回1.
* 问题:如果 x = 0x0, 那么返回的不是1,而是0;如果 x = 0x00001000,返回的是1,而不是2.为什么?
*/
#define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)

/*
* PFN_DOWN:获取地址x所在物理页帧的前一个PFN值,即如果x属于page 1,则返回0.
*/
#define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
/*
* PFN_PHYS:返回PFN值为x时,对应的物理页帧的起始地址
*/
#define
PFN_PHYS(x) ((phys_addr_t)(x) << PAGE_SHIFT)

关于上述问题,其实如果看看它的实际应用场景就会明白的。要记住:PFN是一个从0开始的页帧编号

 

  打印结果记录:

    initrd_start = 0x81a0000, initrd_end = 0x81b2e720  

 

  我们继续看 start_kernel—>setup_arch—>arch_mem_init—>bootmem_init。

/* kernel/arch/mips/kernel/setup.c */
static void __init bootmem_init(void)
{unsigned long reserved_end;unsigned long mapstart = ~0UL;unsigned long bootmap_size;int i;/** Init any data related to initrd. It's a nop if INITRD is* not selected. Once that done we can determine the low bound* of usable memory.*/
  /*
   * 初始化所有和initrd相关的数据。如果没有INITRD,这将是一个空操作。一旦该操作完成,我们就可以确定可用内存的边界。
  */
  // 计算需要为initrd保留的内存区域,那么剩余的内存就是可用内存
reserved_end
= max(init_initrd(),(unsigned long) PFN_UP(__pa_symbol(&_end)));
  // reserved_end = max(0x1b2f, 0x936) = 0x1b2f
  /** Redo reserved_end because there is no need to reserve so much memory(about 20MB).*/reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
  // reserved_end = 0x936 = 2358(PFN)
  /*
   * 上述步骤中得 PFN_UP(__pa_symbol(&end)) 不太懂,没有继续深入,而且上述步骤计算reserved_end做的一些事也是不太理解!!
  */
/** max_low_pfn is not a number of pages. The number of pages* of the system is given by 'max_low_pfn - min_low_pfn'.
* 系统物理页帧总数 = max_low_pfn - min_low_pfn
*/min_low_pfn = ~0UL;max_low_pfn = 0;/** Find the highest page frame number we have available.*/
  /*
   * 寻找最大可用PFN。
   * 代码很简单,记录下我们的打印,助于分析:
* memory: 0e000000 @ 00000000 (usable)
* memory:10000000 @ 30000000 (usable)
   * start = 0, end = 53744
* start = 196608, end = 262144
* mapstart = 2358
  */
for (i = 0; i < boot_mem_map.nr_map; i++) {unsigned long start, end;if (boot_mem_map.map[i].type != BOOT_MEM_RAM)continue;start = PFN_UP(boot_mem_map.map[i].addr);end = PFN_DOWN(boot_mem_map.map[i].addr+ boot_mem_map.map[i].size);
if (end > max_low_pfn)max_low_pfn = end;if (start < min_low_pfn)min_low_pfn = start;if (end <= reserved_end)continue;if (start >= mapstart)continue;mapstart = max(reserved_end, start);}if (min_low_pfn >= max_low_pfn)panic("Incorrect memory mapping !!!");if (min_low_pfn > ARCH_PFN_OFFSET) {pr_info("Wasting %lu bytes for tracking %lu unused pages\n",(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),min_low_pfn - ARCH_PFN_OFFSET);} else if (min_low_pfn < ARCH_PFN_OFFSET) {pr_info("%lu free pages won't be used\n",ARCH_PFN_OFFSET - min_low_pfn);}min_low_pfn = ARCH_PFN_OFFSET; // 就是0/** Determine low and high memory ranges*/
  /*
    HIGHMEM_START:定义在kernel/arch/include/asm/mach-generic/spaces.h
    对于32位系统, #define HIGHMEM_START _AC(0x20000000, UL) 【就是512M,从512M开始的物理地址认为是高端内存
    经过下边的计算:highstart_pfn = PFN_DOWN(HIGHMEM_START) = 131072, hightend_pfd = 262144
           min_low_pfn = 0, max_low_pfn = 131072
  */
max_pfn = max_low_pfn;if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { #ifdef CONFIG_HIGHMEMhighstart_pfn = PFN_DOWN(HIGHMEM_START);highend_pfn = max_low_pfn; #endifmax_low_pfn = PFN_DOWN(HIGHMEM_START);}/** Initialize the boot-time allocator with low memory only.
* 在系统启动过程中,内存管理尚未初始化,但内核需要分配内存 以创建各种数据结构,bootmem分配器用于在启动阶段早起的内存分配。
   * 所以,init_bootmem_node计算 bootmem allocator 所需内存大小,该部分内存是作为 reserved memory。
*/bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,min_low_pfn, max_low_pfn);for (i = 0; i < boot_mem_map.nr_map; i++) {unsigned long start, end;start = PFN_UP(boot_mem_map.map[i].addr);end = PFN_DOWN(boot_mem_map.map[i].addr+ boot_mem_map.map[i].size);if (start <= min_low_pfn)start = min_low_pfn;if (start >= end)continue;#ifndef CONFIG_HIGHMEMif (end > max_low_pfn)end = max_low_pfn;/** ... finally, is the area going away?*/if (end <= start)continue; #endif// start 和 end 没有发生改变:
// start = 0, end = 57344
    // start = 196608, end = 262144
add_active_range(
0, start, end); // 记录物理内存的PFN信息}/** Register fully available low RAM pages with the bootmem allocator.
   * 注册所有的可用低端内存给bootmem allocator【bootmem allocator可以操作低端内存】
*/for (i = 0; i < boot_mem_map.nr_map; i++) {unsigned long start, end, size;/** Reserve usable memory.*/if (boot_mem_map.map[i].type != BOOT_MEM_RAM)continue;start = PFN_UP(boot_mem_map.map[i].addr);end = PFN_DOWN(boot_mem_map.map[i].addr+ boot_mem_map.map[i].size);/** We are rounding up the start address of usable memory* and at the end of the usable range downwards.*/if (start >= max_low_pfn)continue;if (start < reserved_end)start = reserved_end;if (end > max_low_pfn)end = max_low_pfn;/** ... finally, is the area going away?*/if (end <= start)continue;

     /* start = 2358, end = 53744 */size
= end - start;/* Register lowmem ranges 【完成注册】*/free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);memory_present(0, start, end);}/** Reserve the bootmap memory.【保留bootmap memory,mapstart = 2358, PFN_PHYS(mapstart) = 0x936000, bootmap_size = 16384Byte】*/reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);/** Reserve initrd memory if needed.【为initrd保留内存】 Initial ramdisk at:0x81a00000 (1238816 bytes)*/finalize_initrd(); }

 

2. init_initrd

  在 kernel/init/do_mounts_initrd.c中定义了变量:

unsigned long initrd_start, initrd_end;

  在arch_mem_init —> parse_early_param 中,不仅调用了early_parse_mem函数,同时也调用了:rd_start_early和rd_size_early。

  这两个函数就是解析 command line 中指定的 initrd 的内存信息,代码我就贴了,调用这两个函数的结果就是:

initrd_start = 0x81a00000
initrd_end  = 0x81b2e720
/** command line : console=ttyS3,115200n8 mem=224M@0x0 mem=256M@0x30000000 ip=off root=/dev/ram0 rw rdinit=/init rd_start=0x81A00000 rd_size=0x0012E720
*/

  此时, arch_mem_init—>bootmem_init—>init_initrd:

/* it returns the next free pfn after initrd */
static unsigned long __init init_initrd(void)
{unsigned long end;/** Board specific code or command line parser should have* already set up initrd_start and initrd_end. In these cases* perfom sanity checks and use them if all looks good.*/if (!initrd_start || initrd_end <= initrd_start)goto disable;if (initrd_start & ~PAGE_MASK) {pr_err("initrd start must be page aligned\n");goto disable;}if (initrd_start < PAGE_OFFSET) {pr_err("initrd start < PAGE_OFFSET\n");goto disable;}/** Sanitize initrd addresses. For example firmware* can't guess if they need to pass them through* 64-bits values if the kernel has been built in pure* 32-bit. We need also to switch from KSEG0 to XKPHYS* addresses now, so the code can now safely use __pa().*/end = __pa(initrd_end);initrd_end = (unsigned long)__va(end);initrd_start = (unsigned long)__va(__pa(initrd_start));ROOT_DEV = Root_RAM0;return PFN_UP(end);
disable:initrd_start = 0;initrd_end = 0;return 0;
}

 

转载于:https://www.cnblogs.com/ronnydm/p/5889834.html


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部