Python机器学习(四):logistic回归
logistic回归
logistic回归虽名为回归但其实做的是分类问题,是一个典型的线性分类器。
如上图中所示:将一组数据特征X输入分类器,它会输出一个预测值y帽(也可以表示为a)。
logistic回归的模型参数为W和b,其中W为一(n,1)矩阵,n为数据特征的维数,也就是X的维数,图中n=3。
由于 WTX+b 是一个处于正负无穷间的实数,由于是二分类问题,所以我们的输出(输出定义为预测为1类别的概率)的其实是一个概率要在[0,1]内。所以要引入sigmoid函数,将正负无穷之间的输出转换到[0,1]内。
损失函数L(a,y)用来衡量模型在单个样本上的表现((i)表示第i个样本)。
成本函数J(W,b)用来衡量模型在全体训练集上的表现(m为训练集样本个数):
J(W,b)=1m∑i=1mL(a(i)
logistic回归中的梯度下降法
在反向传播中:
dLdz=dLdadadz=(1−y1−a−ya)(a(1−a))=a−y
当有m个训练样本时设:
da=dLda(i)
dz=(a(i)−y(i))
dw=dJdW=1mXdZT
dZ 为 dz 的矩阵表示(大写字母表示矩阵),上述dZ和X矩阵相乘是自带求和功能
dZ=A−Y
db=dJdb=1m∑i=1mdz
最终用 dw
W−=αdw
b−=αdb
代码实现
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 27 20:12:48 2017@author: YangYuan
"""import numpy as npdef sigmoid(inX):return 1.0/(1+np.exp(-inX))def plotBestFit(data,label,weight):import matplotlib.pyplot as pltx1 = []y1 = []x0 = []y0 = []for index,i in enumerate(label[0]):if i == 1:x1.append(data[1,index])y1.append(data[2,index])else:x0.append(data[1,index])y0.append(data[2,index])fig = plt.figure()ax = fig.add_subplot(111)ax.scatter(x0,y0,s=30,c='red',marker='s')ax.scatter(x1,y1,s=30,c='green')x = np.arange(-4.0,4.0,0.1)y = -(x*weight[1][0]+weight[0][0])/weight[2][0]ax.plot(x,y)plt.xlabel('X1')plt.ylabel('X2')plt.show()def main(): data_raw = np.loadtxt('testSet.txt')#分离数据与标签,并将标签转换为整形data = data_raw[:,:2].Tlabel = data_raw[:,2:3].T.astype(int) m,n = np.shape(data) #m,n = data.shape temp = np.ones((1,n))data = np.insert(data,0,values=temp,axis=0)m,n = np.shape(data)w = np.random.randn(m,1)*0.01plotBestFit(data,label,w)for i in range(1000):dz = sigmoid(np.dot(w.T,data))-labeldw = np.dot(data,dz.T)/nalpha = 0.1w -= alpha*dwplotBestFit(data,label,w)if __name__ == '__main__':main()
testSet.txt中的内容
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
0.850433 6.920334 1
1.347183 13.175500 0
1.176813 3.167020 1
-1.781871 9.097953 0
-0.566606 5.749003 1
0.931635 1.589505 1
-0.024205 6.151823 1
-0.036453 2.690988 1
-0.196949 0.444165 1
1.014459 5.754399 1
1.985298 3.230619 1
-1.693453 -0.557540 1
-0.576525 11.778922 0
-0.346811 -1.678730 1
-2.124484 2.672471 1
1.217916 9.597015 0
-0.733928 9.098687 0
-3.642001 -1.618087 1
0.315985 3.523953 1
1.416614 9.619232 0
-0.386323 3.989286 1
0.556921 8.294984 1
1.224863 11.587360 0
-1.347803 -2.406051 1
1.196604 4.951851 1
0.275221 9.543647 0
0.470575 9.332488 0
-1.889567 9.542662 0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303 1
1.042222 6.105155 1
-0.618787 10.320986 0
1.152083 0.548467 1
0.828534 2.676045 1
-1.237728 10.549033 0
-0.683565 -2.166125 1
0.229456 5.921938 1
-0.959885 11.555336 0
0.492911 10.993324 0
0.184992 8.721488 0
-0.355715 10.325976 0
-0.397822 8.058397 0
0.824839 13.730343 0
1.507278 5.027866 1
0.099671 6.835839 1
-0.344008 10.717485 0
1.785928 7.718645 1
-0.918801 11.560217 0
-0.364009 4.747300 1
-0.841722 4.119083 1
0.490426 1.960539 1
-0.007194 9.075792 0
0.356107 12.447863 0
0.342578 12.281162 0
-0.810823 -1.466018 1
2.530777 6.476801 1
1.296683 11.607559 0
0.475487 12.040035 0
-0.783277 11.009725 0
0.074798 11.023650 0
-1.337472 0.468339 1
-0.102781 13.763651 0
-0.147324 2.874846 1
0.518389 9.887035 0
1.015399 7.571882 0
-1.658086 -0.027255 1
1.319944 2.171228 1
2.056216 5.019981 1
-0.851633 4.375691 1
-1.510047 6.061992 0
-1.076637 -3.181888 1
1.821096 10.283990 0
3.010150 8.401766 1
-1.099458 1.688274 1
-0.834872 -1.733869 1
-0.846637 3.849075 1
1.400102 12.628781 0
1.752842 5.468166 1
0.078557 0.059736 1
0.089392 -0.715300 1
1.825662 12.693808 0
0.197445 9.744638 0
0.126117 0.922311 1
-0.679797 1.220530 1
0.677983 2.556666 1
0.761349 10.693862 0
-2.168791 0.143632 1
1.388610 9.341997 0
0.317029 14.739025 0
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
