英文事件抽取论文

转自:https://blog.csdn.net/weixin_41650458/article/details/87854512

基于特征的方法
  2006_ACL_The Stages of Event Extraction
  2008_ACL_Refining Event Extractionthrough Cross-document Inference
  2010_ACL_Using Document Level Cross-Event Inference to IMprove Event Extraction
  2011_ACL_Using Cross-Entity Inference to Improve Event Extraction
  2013_ACL_Joint Event Extraction via Structured Prediction with Global Features
  2016_AAAI_A Probabilistic Soft Logic Based Approach to Exploiting Latent and Global Information in Event Classification

  基于表示的神经网络方法
  2015_ACL_Event Detection and Domain Adaptation with Convolutional Neural Networks
  2015_ACL_Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks
  2016_ACL_A Language-Independent Neural Network for Event Detection
  2016_ACL_Leveraging FrameNet to Improve Automatic Event Detection
  2016_EMNLP_Modeling Skip-Grams for Event Detection with Convolutional Neural Networks
  2016_NAACL_Joint Event Extraction via Recurrent Neural Networks
  2016_CCL_Event Extraction via Bidirectional Long Short-Term Memory Tensor Neural Networks
  2017_ACL_Automatically Labeled Data Generation for Large Scale Event Extraction
  2017_ACL_Exploiting Argument Information  to Improve Event Detection via Supervised Attention Mechanisms
  2017_CCL_Improving Event Detection via Information Sharing among Related Event Types

  
  2018_AAAI_Event Detection via Gated Multilingual Attention Mechanism
  2018_AAAI_Graph Convolutional Networks with Argument-Aware Pooling for Event Detection
  2018_AAAI_Jointly Extracting Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based Argument Interaction
  2018_ACL_Self-regualation: Employing a Generative Adversarial Network to Improve Event Detection
  2018_ACL_Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention
  2018_ACL_Zero-Shot Transfer Learning for Event Extraction
  2018_EMNLP_Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation
  2018_EMNLP_Collective Event Detection via Hierarchical and Bias Tagging Networks with Gated Multi-level Attention Mechanisms
  2018_EMNLP_Exploiting Contextual Information via Dynamic Memory Network for Event Detection
 


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部