指数型生成函数[bzoj3456]城市规划

前言

打完多项式板子后的第一题+清真的题意

题目相关

题目链接

题目大意

nnn个点的简单(无重边无自环)无向连通图数目
输出模1004535809(479∗221+1)1004535809(479*2^{21}+1)1004535809(479221+1)

数据范围

n≤130000n\le 130000n130000

题解

暴力

我只推出了个暴力,感觉和多项式没啥关系
如果没有任何限制,那么答案为2Cn22^{C_n^2}2Cn2
FnF_nFn为答案,写出递推式(用所有的方案数减去不连通的方案数,枚举最后一个点所处的联通块大小即可)
Fi=2Ci2−∑j=1i−1Fj∗Ci−1j−1∗2Ci−j2F_i=2^{C_i^2}-\sum_{j=1}^{i-1}F_j*C_{i-1}^{j-1}*2^{C_{i-j}^2}Fi=2Ci2j=1i1FjCi1j12Cij2
递推+快速幂
复杂度O(n2logp)\mathcal O(n^2logp)O(n2logp)
要是没有代码长度限制就可以打表过了(大雾)

正解

和暴力几乎没啥关系
考虑指数型生成函数
我们来观察指数型生成函数的性质,列出两个指数型生成函数
A(x)=∑i=0∞aixii!A(x)=\sum_{i=0}^{\infty}a_i\frac{x^i}{i!}A(x)=i=0aii!xi
B(x)=∑i=0∞bixii!B(x)=\sum_{i=0}^{\infty}b_i\frac{x^i}{i!}B(x)=i=0bii!xi
我们观察一下A(x)⋅B(x)A(x)·B(x)A(x)B(x)
A(x)⋅B(X)=(∑i=0∞aixii!)⋅(∑i=0∞bixii!)=∑i=0∞aixii!∑j=0∞bjxjj!=∑i=0∞∑j=0∞aixii!bjxjj!=∑n=0∞(∑i=0∞(ni)aibn−i)xnn!\begin{aligned} A(x)·B(X)&=(\sum_{i=0}^{\infty}a_i\frac{x^i}{i!})·(\sum_{i=0}^{\infty}b_i\frac{x^i}{i!})\\ &=\sum_{i=0}^{\infty}a_i\frac{x^i}{i!}\sum_{j=0}^{\infty}b_j\frac{x^j}{j!}\\ &=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}a_i\frac{x^i}{i!}b_j\frac{x^j}{j!}\\ &=\sum_{n=0}^{\infty}(\sum_{i=0}^{\infty}\binom{n}{i}a_ib_{n-i})\frac{x^n}{n!}\\ \end{aligned} A(x)B(X)=(i=0aii!xi)(i=0bii!xi)=i=0aii!xij=0bjj!xj=i=0j=0aii!xibjj!xj=n=0(i=0(in)aibni)n!xn
发现这个形式非常的奇妙
如果aia_iai代表在第一个集合中选iii个的方案数,bib_ibi代表在第二个集合中选iii个的方案数
那么相乘后我们就可以知道总共选iii个的方案数

考虑划分
我们发现,如果我们按照划分出一个大小为iii的集合的方案数建一个指数型生成函数F(x)F(x)F(x)
那么我们就能计算出对于nnn个元素划分成mmm个集合的方案数
对于m=0m=0m=0,答案的多项式为111(即只有n=0n=0n=0时方案数为111
对于m=1m=1m=1,答案多项式为F(x)1!\frac{F(x)}{1!}1!F(x)
对于m=2m=2m=2,答案多项式为F2(x)2!\frac{F^2(x)}{2!}2!F2(x)
对于m=3m=3m=3,答案多项式为F3(x)3!\frac{F^3(x)}{3!}3!F3(x)
···
由于划分先后的问题,所以要除以阶乘
如果我们要求每个nnn的划分总方案数
F0(x)0!+F1(x)1!+F(x)2!⋅⋅⋅=∑i=0∞Fi(x)i!\frac{F^0(x)}{0!}+\frac{F^1(x)}{1!}+\frac{F^(x)}{2!}···=\sum_{i=0}^\infty \frac{F^i(x)}{i!}0!F0(x)+1!F1(x)+2!F(x)=i=0i!Fi(x)
根据底数为eee的泰勒展开式ex=∑i=0∞xii!e^x=\sum_{i=0}^\infty\frac {x^i}{i!}ex=i=0i!xi
我们得到∑i=0∞Fi(x)i!=eF(x)\sum_{i=0}^\infty \frac{F^i(x)}{i!}=e^{F(x)}i=0i!Fi(x)=eF(x)


回到本题: 我们思考,在这一题中,所有联通图都是无限制图的一个划分
F(x)F(x)F(x)为联通图方案数的多项式,G(x)G(x)G(x)为无限制图方案数的多项式
容易发现eF(x)=G(x)e^{F(x)}=G(x)eF(x)=G(x)
所以F(x)=ln(G(x))F(x)=ln(G(x))F(x)=ln(G(x))
我们发现G(x)G(x)G(x)非常好求(暴力的那部分已经说过了)
然后直接多项式ln即可

代码

拉了板子所以代码很长

#include
#include
#include
#include
#include
namespace fast_IO
{const int IN_LEN=10000000,OUT_LEN=10000000;char ibuf[IN_LEN],obuf[OUT_LEN],*ih=ibuf+IN_LEN,*oh=obuf,*lastin=ibuf+IN_LEN,*lastout=obuf+OUT_LEN-1;inline char getchar_(){return (ih==lastin)&&(lastin=(ih=ibuf)+fread(ibuf,1,IN_LEN,stdin),ih==lastin)?EOF:*ih++;}inline void putchar_(const char x){if(oh==lastout)fwrite(obuf,1,oh-obuf,stdout),oh=obuf;*oh++=x;}inline void flush(){fwrite(obuf,1,oh-obuf,stdout);}
}
using namespace fast_IO;
#define getchar() getchar_()
#define putchar(x) putchar_((x))
typedef long long ll;
#define rg register
template <typename T> inline T max(const T a,const T b){return a>b?a:b;}
template <typename T> inline T min(const T a,const T b){return a<b?a:b;}
template <typename T> inline T mind(T&a,const T b){a=a<b?a:b;}
template <typename T> inline T maxd(T&a,const T b){a=a>b?a:b;}
template <typename T> inline T abs(const T a){return a>0?a:-a;}
template <typename T> inline void swap(T&a,T&b){T c=a;a=b;b=c;}
template <typename T> inline void swap(T*a,T*b){T c=a;a=b;b=c;}
template <typename T> inline T gcd(const T a,const T b){if(!b)return a;return gcd(b,a%b);}
template <typename T> inline T square(const T x){return x*x;};
template <typename T> inline void read(T&x)
{char cu=getchar();x=0;bool fla=0;while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}while(isdigit(cu))x=x*10+cu-'0',cu=getchar();if(fla)x=-x;  
}
template <typename T> void printe(const T x)
{if(x>=10)printe(x/10);putchar(x%10+'0');
}
template <typename T> inline void print(const T x)
{if(x<0)putchar('-'),printe(-x);else printe(x);
}
const int maxn=2097152,mod=1004535809;
inline int Md(const int x){return x>=mod?x-mod:x;}
template<typename T>
inline int pow(int x,T y)
{rg int res=1;x%=mod;for(;y;y>>=1,x=(ll)x*x%mod)if(y&1)res=(ll)res*x%mod;return res;
}
namespace Poly///namespace of Poly
{
int W_[maxn],FW_[maxn],ha[maxn],hb[maxn],Inv[maxn];
inline void init(const int x)
{rg int tim=0,lenth=1;while(lenth<x)lenth<<=1,tim++;for(rg int i=1;i<lenth;i++){W_[i]=pow(3,(mod-1)/i/2);FW_[i]=pow(W_[i],mod-2);}Inv[0]=Inv[1]=1;for(rg int i=2;i<x;i++)Inv[i]=(ll)(mod-mod/i)*Inv[mod%i]%mod;
}
int L;
inline void NTT(int*A,const int fla)//prepare:init L 
{for(rg int i=0,j=0;i<L;i++){if(i>j)swap(A[i],A[j]);for(rg int k=L>>1;(j^=k)<k;k>>=1);}for(rg int i=1;i<L;i<<=1){const int w=fla==-1?FW_[i]:W_[i];for(rg int j=0,J=i<<1;j<L;j+=J){int K=1;for(rg int k=0;k<i;k++,K=(ll)K*w%mod){const int x=A[j+k],y=(ll)A[j+k+i]*K%mod;A[j+k]=Md(x+y),A[j+k+i]=Md(mod+x-y);}}}
}
inline int Quadratic_residue(const int a)
{if(a==0)return 0;int b=(rand()<<14^rand())%mod;while(pow(b,(mod-1)>>1)!=mod-1)b=(rand()<<14^rand())%mod;int s=mod-1,t=0,x,inv=pow(a,mod-2),f=1;while(!(s&1))s>>=1,t++,f<<=1;t--,x=pow(a,(s+1)>>1),f>>=1;while(t){f>>=1;if(pow((int)((ll)inv*x%mod*x%mod),f)!=1)x=(ll)x*pow(b,s)%mod;t--,s<<=1;}return min(x,mod-x);
}
struct poly
{std::vector<int>A;poly(){A.resize(0);}poly(const int x){A.resize(1),A[0]=x;}inline int&operator[](const int x){return A[x];}inline int operator[](const int x)const{return A[x];}inline void clear(){A.clear();}inline unsigned int size()const{return A.size();}inline void resize(const unsigned int x){A.resize(x);}void RE(const int x){A.resize(x);for(rg int i=0;i<x;i++)A[i]=0; }void readin(const int MAX){A.resize(MAX);for(rg int i=0;i<MAX;i++)read(A[i]);}void putout()const{for(rg unsigned int i=0;i<A.size();i++)print(A[i]),putchar(' ');}inline poly operator +(const poly b)const{poly RES;RES.resize(max(size(),b.size()));for(rg unsigned int i=0;i<RES.size();i++)RES[i]=Md((i<size()?A[i]:0)+(i<b.size()?b[i]:0));return RES;}inline poly operator -(const poly b)const{poly RES;RES.resize(max(size(),b.size()));for(rg unsigned int i=0;i<RES.size();i++)RES[i]=Md((i<size()?A[i]:0)+mod-(i<b.size()?b[i]:0));return RES;}inline poly operator *(const int b)const{poly RES=*this;for(rg unsigned int i=0;i<RES.size();i++)RES[i]=(ll)RES[i]*b%mod;return RES;}inline poly operator /(const int b)const{poly RES=(*this)*pow(b,mod-2);return RES;}inline poly operator *(const poly b)const{const int RES=A.size()+b.size()+1;L=1;while(L<RES)L<<=1;poly c;c.A.resize(RES);memset(ha,0,sizeof(int)*L);memset(hb,0,sizeof(int)*L);for(rg unsigned int i=0;i<A.size();i++)ha[i]=A[i];for(rg unsigned int i=0;i<b.A.size();i++)hb[i]=b.A[i];NTT(ha,1),NTT(hb,1);for(rg int i=0;i<L;i++)ha[i]=(ll)ha[i]*hb[i]%mod;NTT(ha,-1);const int inv=pow(L,mod-2);for(rg int i=0;i<RES;i++)c.A[i]=(ll)ha[i]*inv%mod;return c;}inline poly inv()const{poly C;if(A.size()==1){C=*this;C[0]=pow(C[0],mod-2);return C;}C.resize((A.size()+1)>>1);for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];C=C.inv();L=1;while(L<(int)size()*2-1)L<<=1;for(rg unsigned int i=0;i<A.size();i++)ha[i]=A[i];for(rg unsigned int i=0;i<C.size();i++)hb[i]=C[i];memset(ha+A.size(),0,sizeof(int)*(L-A.size()));memset(hb+C.size(),0,sizeof(int)*(L-C.size()));NTT(ha,1),NTT(hb,1);for(rg int i=0;i<L;i++)ha[i]=(ll)(2-(ll)hb[i]*ha[i]%mod+mod)*hb[i]%mod;NTT(ha,-1);const int inv=pow(L,mod-2);C.resize(size());for(rg unsigned int i=0;i<size();i++)C[i]=(ll)ha[i]*inv%mod;return C;}
/*    inline poly inv()const{poly C;if(A.size()==1){C=*this;C[0]=pow(C[0],mod-2);return C;}C.resize((A.size()+1)>>1);for(rg unsigned int i=0;i//大常数版本 inline void Reverse(const int n){A.resize(n);for(rg int i=0,j=n-1;i<j;i++,j--)swap(A[i],A[j]);}inline poly operator /(const poly B)const{poly a=*this,b=B;a.Reverse(size()),b.Reverse(B.size());b.resize(size()-B.size()+1);b=b.inv();b=b*a;b.Reverse(size()-B.size()+1);return b;}inline poly operator %(const poly B)const{poly C=(*this)-(*this)/B*B;C.resize(B.size()-1);return C;}inline poly diff()const{poly C;C.resize(size()-1);for(rg unsigned int i=1;i<size();i++)C[i-1]=(ll)A[i]*i%mod;return C;}inline poly inte()const{poly C;C.resize(size()+1);for(rg unsigned int i=0;i<size();i++)C[i+1]=(ll)A[i]*Inv[i+1]%mod;C[0]=0;return C;}inline poly ln()const{poly C=(diff()*inv()).inte();C.resize(size());return C;}inline poly exp()const{poly C;if(size()==1){C=*this;C[0]=1;return C;}C.resize((size()+1)>>1);for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];C=C.exp();C.resize(size());poly D=(poly)1-C.ln()+*this;D=D*C;D.resize(size());return D;}inline poly sqrt()const{poly C;if(size()==1){C=*this;C[0]=Quadratic_residue(C[0]);return C;}C.resize((size()+1)>>1);for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i];C=C.sqrt();C.resize(size());C=(C+*this*C.inv())*(int)499122177;C.resize(size());return C;}inline poly operator >>(const unsigned int x)const{poly C;if(size()<x){C.resize(0);return C;}C.resize(size()-x);for(rg unsigned int i=0;i<C.size();i++)C[i]=A[i+x];return C;}inline poly operator <<(const unsigned int x)const{poly C;C.RE(size()+x);for(rg unsigned int i=0;i<size();i++)C[i+x]=A[i];return C;}inline poly Pow(const unsigned int x)const{for(rg unsigned int i=0;i<size();i++)if(A[i]){poly C=((((*this/A[i])>>i).ln()*x).exp()*pow(A[i],x))<<(min(i*x,size()));C.resize(size());return C;}return *this;}
};
}///namespace of Poly
Poly::poly a;
int n;
int fac[maxn+1],inv[maxn+1]; 
int main()
{fac[0]=1;for(rg int i=1;i<=maxn;i++)fac[i]=(ll)fac[i-1]*i%mod;inv[maxn]=pow(fac[maxn],mod-2);for(rg int i=maxn;i>=1;i--)inv[i-1]=(ll)inv[i]*i%mod;Poly::init(maxn);///namespace of Polyread(n);a.RE(n+1);for(rg int i=0;i<=n;i++)a[i]=(ll)pow(2,((ll)i*(i-1))>>1)*inv[i]%mod;a=a.ln();print((ll)a[n]*fac[n]%mod);return flush(),0;
}

总结

好推+好用的指数型生成函数!


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部