机器学习

机器学习流程,以及实践应用

我所理解的机器学习是一种能够实现人工智能的技术,建立能从经验(数据)中进行学习的模型,从而使这个模型可以达到自行处理此类数据的能力。也可以理解为:通过大量的数

如何用数学函数去理解机器学习?

近期也是在做项目的过程中发现,其实AI产品经理不需要深入研究每一种算法,能了解机器学习的过程,这其中用到哪些常用算法,分别使用与解决哪些问题和应用场景,并基于了

推荐系统技术文本相似性计算(三)实战篇

前两篇可以直接看我的专栏或者文本相似性计算(一)文本相似性计算(二)前面说了两篇了,分别介绍了TFIDF和向量空间的相关东西,然后介绍了主题模型,这一篇我们就来试试这两个东西。词向量就不在这篇试了,词向量和这两个关系不大,不好对比,不过我最后也给出了代码。0. 工具准备工欲善其事,必先利其器,那么我们先来利其器,这里我们使用的是python的gensim工具包,地址是:ht

翻译翻译,什么叫机器学习?

认识世界,就是一个从已知到未知的函数。机器学习,就是预测这个函数,并且使预测结果尽量准确。本文作者围绕机器学习展开讨论,与你分享。问:谈谈你对机器学习的理解。答:机器学习就是用已知去预测未知。认识世界,就是一个从已知到未知的函数。收集一大堆数据,然后用它们去预测一个值,就是回归问题。例如数码回收,根据你的机型、机况和行情,给出一个价格走势;从一大堆数据中,找到属于

机器学习与神经网络

作为产品经理起码要了解算法的原理以及它的边界和优势,能够知道在不同场景下应用什么算法什么模型可以达到目的。一、机器学习的现状和瓶颈机器学习如今已算是在互联网圈家喻户晓的名词了。现实生活中其实也早有很多应用,什么无人驾驶,人脸识别,智能音响等等。去年七月国家发布了《新一代人工智能发展规划》,说明人工智能领域已经上升到了国家战略层面。身边一直羡慕的土豪朋友们五年后的长线股也都已

人工智能PM系列文章(二)PM要学会使用数据

本期和大家聊聊产品经理在机器学习领域该如何理解数据、使用数据、以及面对大数据的治理需要具备的一些基本素质。机器学习三要素:业内公认的机器学习三大要素:算法、计算能力、数据。1、算法:随着Google的Tensorflow的诞生,将算法迅速应用到产品中的门槛大幅度降低。使用Tensorflow可以让应用型研究者将想法迅速运用到产品中,也可以让学术性研究者更直接地彼此分享代码,