【基础】求极限
无穷小量以及无穷大量
无穷小量
极限为零
x → 0 , x 3 , x 5 , s i n x , t a n x , c o s x − 1 x\rightarrow0,x^3,x^5,sinx,tanx,cosx - 1 x→0,x3,x5,sinx,tanx,cosx−1
无穷小量是一个变量,并不代表一个很小的数
x→[ ]:这里可以趋近于任何数,不一定是0
极限为0;数字为0
无穷大量
结论和公式
lim x → ∞ a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 b m x m + b m − 1 x m − 1 + . . . + b 1 x + b 0 = { 0 , n < m a n b n , n = m , a n ≠ 0 , b m ≠ 0 ∞ , n > m \begin{aligned} \lim_{x\to \infty} {a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 \over b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0} = \begin{cases} 0, & n < m\\ {a_n \over b_n}, & n = m,a_n \neq 0,b_m \neq 0 \\ \infty, & n > m \end{cases} \end{aligned} \hspace{50cm} x→∞limbmxm+bm−1xm−1+...+b1x+b0anxn+an−1xn−1+...+a1x+a0=⎩ ⎨ ⎧0,bnan,∞,n<mn=m,an=0,bm=0n>m
lim n → ∞ a n = { 0 , ∣ a ∣ < 1 1 , a = 1 不存在 , 其他 . \begin{aligned} \lim_{n\to \infty}a^n = \begin{cases} 0, & |a| < 1\\ 1, & a = 1 \\ 不存在,& 其他. \end{cases} \end{aligned} \hspace{50cm} n→∞liman=⎩ ⎨ ⎧0,1,不存在,∣a∣<1a=1其他.
lim x → ∞ f ( x ) = A ↔ lim x → + ∞ f ( x ) = lim x → − ∞ f ( x ) = A \begin{aligned} \lim_{x\to \infty}f(x) = A \harr \lim_{x\to +\infty}f(x) = \lim_{x\to -\infty}f(x) = A \end{aligned}\hspace{50cm} x→∞limf(x)=A↔x→+∞limf(x)=x→−∞limf(x)=A
无穷小量乘以有界量等于无穷小量
lim x → 0 s i n x x = 1 , lim x → 0 x s i n x 1 x = 0 , lim x → ∞ s i n x x = 0 , lim x → ∞ x s i n x 1 x = 1 , \lim_{x\to 0}{sinx \over x} = 1, \lim_{x \to 0}xsinx{1 \over x} = 0, \lim_{x \to \infty}{sinx \over x} = 0, \lim_{x \to \infty}xsinx{1 \over x} = 1,\hspace{50cm} x→0limxsinx=1,x→0limxsinxx1=0,x→∞limxsinx=0,x→∞limxsinxx1=1,
lim f ( x ) g ( x ) = lim f ( x ) ∗ lim ( g x ) 前提是 lim f ( x ) 、 lim ( g x ) 存在 \lim f(x)g(x) = \lim f(x) * \lim (gx) 前提是 \lim f(x) 、 \lim (gx) 存在\hspace{100cm} limf(x)g(x)=limf(x)∗lim(gx)前提是limf(x)、lim(gx)存在
指数函数在0+ 0-的时候极限不一样
无穷小量就是趋于0的量
有界量就是随便自变量怎么变化,结果都在一个范围内
利用泰勒公式求极限
x 3 + x 5 ≈ x 3 x^3 + x^5 \approx x^3 x3+x5≈x3
麦克劳林公式
s i n x = x − 1 3 ! x 3 + 1 5 ! x 5 + o ( x 5 ) c o s x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) t a n x = x + 1 3 x 3 + o ( x 3 ) a r c s i n x = x + 1 6 x 3 + o ( x 3 ) a r c t a n x = x − 1 3 x 3 + o ( x 3 ) l n ( 1 + x ) = x − 1 2 x 2 + o ( x 2 ) e x = 1 + x + 1 2 x 2 + o ( x 2 ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + o ( x 2 ) \begin{array}{l} sinx = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + o(x^5) \\ \\ cosx = 1 - \frac{1}{2!}x^2 + \frac{1}{4!} x^4 + o(x^4) \\ \\ tanx = x + \frac{1}{3}x^3 + o(x^3) \\ \\ arcsinx = x + \frac{1}{6}x^3 + o(x^3) \\ \\ arctanx = x - \frac{1}{3}x^3 + o(x^3) \\ \\ ln(1 + x) = x - \frac{1}{2}x^2 + o(x^2) \\ \\ e^x = 1 + x + \frac{1}{2}x^2 + o(x^2) \\ \\ (1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2}x^2 + o(x^2) \end{array}\hspace{50cm} sinx=x−3!1x3+5!1x5+o(x5)cosx=1−2!1x2+4!1x4+o(x4)tanx=x+31x3+o(x3)arcsinx=x+61x3+o(x3)arctanx=x−31x3+o(x3)ln(1+x)=x−21x2+o(x2)ex=1+x+21x2+o(x2)(1+x)α=1+αx+2α(α−1)x2+o(x2)
倒代换
x → ∞ 设 t = 1 x 则 t → 0 x \to \infty 设t={1 \over x} 则t \to 0 \hspace{50cm} x→∞设t=x1则t→0
无穷小替换求极限
使用条件
乘除法使用;加减法不用
公式变形
其实就是把常量或着低次项代入到麦克劳林公式,注意熟悉!
e x − 1 ≈ x e^x - 1 \approx x ex−1≈x
↓
e f ( x ) − e g ( x ) = e g ( x ) ( e f ( x ) − g ( x ) − 1 ) ≈ e g ( x ) ( f ( x ) − g ( x ) ) e^{f(x)} - e^{g(x)} = e^{g(x)}(e^{f(x)-g(x)} - 1) \approx e^{g(x)}\Big(f(x)-g(x)\Big) ef(x)−eg(x)=eg(x)(ef(x)−g(x)−1)≈eg(x)(f(x)−g(x))
x → 0 , l n ( 1 + x ) ≈ x x \to 0,ln(1+x) \approx x x→0,ln(1+x)≈x
l n ( 1 + x ) 推广为 l n f ( x ) , f ( x ) → 1 ln(1+x) 推广为lnf(x),f(x) \to 1 ln(1+x)推广为lnf(x),f(x)→1
因此。当 x → x 0 时, f ( x ) → 1 ,则 l n f ( x ) = l n [ 1 + f ( x ) − 1 ] ≈ f ( x ) − 1 因此。当x \to x_0 时,f(x) \to 1,则lnf(x) = ln[1+f(x)-1] \approx f(x) - 1 因此。当x→x0时,f(x)→1,则lnf(x)=ln[1+f(x)−1]≈f(x)−1
洛必达法则
若、 lim f ( x ) = lim g ( x ) = 0 ( ∞ ) 且 lim f ′ ( x ) g ′ ( x ) 存在 ( ∞ ) . 则 lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) 若、\lim f(x) = \lim g(x) = 0(\infty)且\lim{f'(x) \over g'(x)}存在(\infty).则\lim{f(x) \over g(x)} = \lim{f'(x) \over g'(x)} 若、limf(x)=limg(x)=0(∞)且limg′(x)f′(x)存在(∞).则limg(x)f(x)=limg′(x)f′(x)
幂指函数指数化
f ( x ) g ( x ) = e l n f ( x ) g ( x ) = e g ( x ) l n f ( x ) f(x)^{g(x)} = e^{lnf(x)^{g(x)}} = e^{g(x)lnf(x)} f(x)g(x)=elnf(x)g(x)=eg(x)lnf(x)
各种函数的求导
待补充
幂指函数求极限
1 ∞ 、 ∞ 0 、 0 0 1^\infty 、 \infty^0 、0^0 1∞、∞0、00都转化为 0 ∗ ∞ 0*\infty 0∗∞
对于 1 ∞ 1^\infty 1∞型未定式,其极限结果 = e A =e^A =eA
lim x → [ ] [ 1 + f ( x ) ] g ( x ) , f ( x ) → 0 , g ( x ) → ∞ lim x → [ ] [ 1 + f ( x ) ] g ( x ) = e A , A = lim x → [ ] f ( x ) ∗ g ( x ) . \begin{aligned} \lim_{x\to [ ]}[1+f(x)]^g(x),f(x)\to0,g(x)\to \infty \end{aligned}\hspace{50cm} \\ \begin{aligned} \lim_{x\to [ ]}[1+f(x)]^g(x) = e^A,A = \lim_{x\to [ ]} f(x)*g(x). \end{aligned}\hspace{50cm} x→[]lim[1+f(x)]g(x),f(x)→0,g(x)→∞x→[]lim[1+f(x)]g(x)=eA,A=x→[]limf(x)∗g(x).
lim x → [ ] f ( x ) g ( x ) , f ( x ) → 1 , g ( x ) → ∞ lim x → [ ] f ( x ) g ( x ) = e A , A = lim x → [ ] [ f ( x ) − 1 ] ∗ g ( x ) \begin{aligned} \lim_{x\to [ ]}f(x)^{g(x)},f(x)\to1,g(x)\to \infty \end{aligned}\hspace{50cm} \\ \begin{aligned} \lim_{x\to [ ]}f(x)^{g(x)} = e^A,A = \lim_{x\to [ ]}[f(x)-1]*g(x) \end{aligned}\hspace{50cm} x→[]limf(x)g(x),f(x)→1,g(x)→∞x→[]limf(x)g(x)=eA,A=x→[]lim[f(x)−1]∗g(x)
lim x → ∞ ( a x + b a x + c ) h x + k = e ( b − c ) h a \begin{aligned} \lim_{x \to \infty}({ax + b \over ax +c})^{hx+k} = e^{(b-c)h \over a} \end{aligned}\hspace{50cm} x→∞lim(ax+cax+b)hx+k=ea(b−c)h
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
