人工智能教程 - 数学基础课程1.5 - 离散数学-2 反证法和数学归纳法
反证法和数学归纳法
反证法(a proof by contradiction)
为了证明命题p为真,先假设它为假(非P是真)。然后用这个假设P为假来推导出一个错误。换句话,你证明了一个错误是真的。这叫做推导出矛盾。
(So to prove a proposition p is true,you will assume P it’s false(not P is true).and then you use that hypothesis,namely the p to derive a falsehood.this is called deriving a contradiction.)
Ex: Thm: 2 \sqrt2 2 is irrational
pf (by contradiction)
Assume for the purpose of contradiction that 2 \sqrt2 2 is rational
⇒ 2 = a / b \Rightarrow \sqrt2=a/b ⇒2=a/b(既约分数a fraction in lowest terms)
⇒ 2 = a 2 / b 2 \Rightarrow 2=a^2/b^2 ⇒2=a2/b2
⇒ 2 b 2 = a 2 \Rightarrow 2b^2=a^2 ⇒2b2=a2
⇒ \Rightarrow ⇒ a is even (2 | a)
⇒ 4 ∣ a 2 \Rightarrow 4 | a^2 ⇒4∣a2
⇒ 4 ∣ 2 b 2 \Rightarrow 4 | 2b^2 ⇒4∣2b2
⇒ 2 ∣ b 2 \Rightarrow 2 | b^2 ⇒2∣b2
⇒ \Rightarrow ⇒ b is even (2 | b)
⇒ \Rightarrow ⇒ a/b is not in lowest terms
⇒ \Rightarrow ⇒ contradiction
⇒ \Rightarrow ⇒ 2 \sqrt2 2 is irrational □ \square □
数学归纳法(Induction axiom)
let P(n) be a predicate.(令P(n)为谓词).If P(0) is true,
and ∀ n ∈ N , ( P ( n ) ⇒ P ( n + 1 ) ) \forall n \in \mathbb{N} , (P(n)\Rightarrow P(n+1)) ∀n∈N,(P(n)⇒P(n+1))is true
then ∀ n ∈ N , P ( n ) \forall n \in \mathbb{N} , P(n) ∀n∈N,P(n) is true
另一种不带 ∀ \forall ∀的说法:
If P ( 0 ) , P ( 0 ) ⇒ P ( 1 ) , P ( 1 ) ⇒ P ( 2 ) , . . . P(0),P(0)\Rightarrow P(1),P(1)\Rightarrow P(2),... P(0),P(0)⇒P(1),P(1)⇒P(2),... are true,
then P(0),P(1),P(2),… are true
就像是多米诺骨牌(domino)
Thm: ∀ n ≥ 0 , 1 + 2 + 3 + . . . + n = n ( n + 1 ) 2 \forall n\geq 0 , 1+2+3+...+n=\frac{n(n+1)}{2} ∀n≥0,1+2+3+...+n=2n(n+1)
If n = 0 n=0 n=0, 1+2+…+n=1
If n ≤ 0 n\leq0 n≤0 1+2+…+n=0
("…"also called ∑ i = 1 n i , ∑ 1 ≤ i ≤ n i , ∑ 1 ≤ i ≤ n i \sum_{i=1}^{n}i,\sum^{1\leq i\leq n}i,\sum_{1\leq i\leq n}i ∑i=1ni,∑1≤i≤ni,∑1≤i≤ni)
Pf: by induction
predicate:(谓词)
Let P(n) be proposition that ∑ i = 1 n i = n ( n + 1 ) 2 \sum_{i=1}^{n}i=\frac{n(n+1)}{2} ∑i=1ni=2n(n+1)
Base case(基本情形) : P(0) is true
∑ i = 1 0 i = 0 = 0 ( 0 + 1 ) 2 \sum_{i=1}^{0}i=0=\frac{0(0+1)}{2} ∑i=10i=0=20(0+1)
Inductive Step:(归纳步骤)
∀ n ≥ 0 , s h o w P ( n ) ⇒ P ( n + 1 ) \forall n \geq 0, show \ \ P(n)\Rightarrow P(n+1) ∀n≥0,show P(n)⇒P(n+1) is true
Assume P(n) is true for purposes of induction
(i.e,assume 1 + 2 + 3 + . . . + n = n ( n + 1 ) 2 1+2+3+...+n=\frac{n(n+1)}{2} 1+2+3+...+n=2n(n+1)
need to show 1 + 2 + 3 + . . . + ( n + 1 ) = ( n + 1 ) ( n + 2 ) 2 1+2+3+...+(n+1)=\frac{(n+1)(n+2)}{2} 1+2+3+...+(n+1)=2(n+1)(n+2)
1 + 2 + 3 + . . . + ( n + 1 ) 1+2+3+...+(n+1) 1+2+3+...+(n+1)= 1 + 2 + 3 + . . . + n + ( n + 1 ) 1+2+3+...+n+(n+1) 1+2+3+...+n+(n+1)
= n ( n + 1 ) 2 + n + 1 = n 2 + n + 2 n + 2 2 = ( n + 1 ) ( n + 2 ) 2 =\frac{n(n+1)}{2}+n+1=\frac{n^2+n+2n+2}{2}=\frac{(n+1)(n+2)}{2} =2n(n+1)+n+1=2n2+n+2n+2=2(n+1)(n+2) □ \square □
Conclusion:(结论)
∴ ∀ n ≥ 0 , P ( n ) ⇒ P ( n + 1 ) \therefore \forall n \geq 0, \ \ P(n)\Rightarrow P(n+1) ∴∀n≥0, P(n)⇒P(n+1)
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
